Advertisement

Hierarchal clustering yields insight into multidrug-resistant bacteria isolated from a cattle feedlot wastewater treatment system

  • Michael A. Jahne
  • Shane W. Rogers
  • Ivan P. Ramler
  • Edith Holder
  • Gina Hayes
Article

Abstract

Forty-two percent of Escherichia coli and 58 % of Enterococcus spp. isolated from cattle feedlot runoff and associated infiltration basin and constructed wetland treatment system were resistant to at least one antibiotic of clinical importance; a high level of multidrug resistance (22 % of E. coli and 37 % of Enterococcus spp.) was observed. Hierarchical clustering revealed a closely associated resistance cluster among drug-resistant E. coli isolates that included cephalosporins (ceftiofur, cefoxitin, and ceftriaxone), aminoglycosides (gentamycin, kanamycin, and amikacin), and quinolone nalidixic acid; antibiotics from these classes were used at the study site, and cross-resistance may be associated with transferrable multiple-resistance elements. For Enterococcus spp., co-resistance among vancomycin, linezolid, and daptomycin was common; these antibiotics are reserved for complicated clinical infections and have not been approved for animal use. Vancomycin resistance (n = 49) only occurred when isolates were resistant to linezolid, daptomycin, and all four of the MLSB (macrolide-lincosamide-streptogramin B) antibiotics tested (tylosin, erythromycin, lincomycin, and quinipristin/dalfopristin). This suggests that developing co-resistance to MLSB antibiotics along with cyclic lipopeptides and oxazolidinones may result in resistance to vancomycin as well. Effects of the treatment system on antibiotic resistance were pronounced during periods of no rainfall and low flow (long residence time). Increased hydraulic loading (short residence time) under the influence of rain caused antibiotic-resistant bacteria to be flushed through the treatment system. This presents concern for environmental discharge of multidrug-resistant organisms relevant to public health.

Keywords

Antibiotic resistance Hierarchal clustering Animal feeding operations Fecal indicator bacteria Wastewater Vancomycin 

Abbreviations

ABC

ATP-binding cassette

ESBL

extended-spectrum beta-lactamases

FIB

fecal indicator bacteria

FDA

U.S. Food and Drug Administration

J

Jaccard similarity

MLSB

macrolide-lincosamide-streptogramin B

MPN

most probable number

MRSA

methicillin-resistant Staphylococcus aureus

UP

undecaprenyl phosphate

UPP

undecaprenyl pyrophosphate

USEPA

U.S. Environmental Protection Agency

VRE

vancomycin-resistant Enterococcus faecium

Notes

Acknowledgments

This project was supported by the National Research Initiative of the USDA Cooperative State Research, Education, and Extension Service, grant number 2007-35102-18614. The U.S. Environmental Protection Agency, through its Office of Research and Development, also funded and collaborated in the research described herein. Any opinions expressed in this paper are those of the authors and do not necessarily reflect the official positions and policies of the USEPA. Any mention of trade names or commercial products does not constitute endorsement or recommendation for use. This material is based, in part, upon work supported by the National Science Foundation under Grant No. 0959713. The authors thank Dr. Robert Burns of Iowa State University for installation, calibration, and maintenance of the sampling equipment and collection and shipment of manure and water samples. The authors also thank the landowner who graciously allowed access and collection of samples at the study site.

References

  1. Aarestrup, F. M. (2000). Characterization of glycopeptide-resistant Enterococcus faecium (GRE) from broilers and pigs in Denmark: genetic evidence that persistence of GRE in Pig herds is associated with coselection by resistance to macrolides. Journal of Clinical Microbiology, 38(7), 2774–2777.Google Scholar
  2. Alexander, T. W., Yanke, L. J., Topp, E., Olson, M. E., Read, R. R., Morck, D. W., et al. (2008). Effect of subtherapeutic administration of antibiotics on the prevalence of antibiotic-resistant Escherichia coli bacteria in feedlot cattle. Applied and Environmental Microbiology, 74(14), 4405–4416.CrossRefGoogle Scholar
  3. Angulo, F. J., Nargund, V. N., & Chiller, T. C. (2004). Evidence of an association between use of anti-microbial agents in food animals and anti-microbial resistance among bacteria isolated from humans and the human health consequences of such resistance. Journal of Veterinary Medicine, 51, 374–379.CrossRefGoogle Scholar
  4. Arias, C. A., & Murray, B. E. (2008). Emergence and management of drug-resistant enterococcal infections. Expert Review of Anti-Infective Therapy, 6(5), 637–655.CrossRefGoogle Scholar
  5. Arias, C. A., & Murray, B. E. (2012). The rise of the Enterococcus: beyond vancomycin resistance. Nature Reviews Microbiology, 10, 266–278.CrossRefGoogle Scholar
  6. Arias, C. A., Panesso, D., McGrath, D. M., Qin, X., Mojica, M., Miller, C., et al. (2011). Genetic basis for in vivo daptomycin resistance in enterococci. New England Journal of Medicine, 365(10), 892–900.CrossRefGoogle Scholar
  7. Bozdogan, B., & Appelbaum, P. C. (2004). Oxazolidinones: activity, mode of action, and mechanism of resistance. International Journal of Antimicrobial Agents, 2004, 113–119.CrossRefGoogle Scholar
  8. Bradford, P. A., Petersen, P. J., Fingerman, I. M., & White, D. G. (1999). Characterization of expanded-spectrum cephalosporin resistance in E. coli isolates associated with bovine and calf diarrhoeal disease. Journal of Antimicrobial Chemotherapy, 44, 607–610.CrossRefGoogle Scholar
  9. Bunny, K. L., Hall, R. M., & Stokes, H. W. (1995). New mobile gene cassettes containing an aminoglycoside resistance gene, aacA7, and a chloramphenicol resistance gene, catB3, in an integron in pBWH301. Antimicrobial Agents and Chemotherapy, 39(3), 686–693.CrossRefGoogle Scholar
  10. Burkholder, J., Libra, B., Weyer, P., Heathcote, S., Kolpin, D., Throne, P. S., et al. (2007). Impacts of waste from concentrated animal feeding operations on water quality. Environmental Health Perspectives, 115(2), 308–312.CrossRefGoogle Scholar
  11. Butaye, P., Devriese, L. A., & Haesebrouck, F. (2003). Antimicrobial growth promoters used in animal feed: effects of less well known antibiotics on gram-positive bacteria. Clinical Microbiology Reviews, 16(2), 175–188.CrossRefGoogle Scholar
  12. Call, D. R., Davis, M. A., & Sawant, A. A. (2008). Antimicrobial resistance in beef and dairy cattle production. Animal Health Research Reviews, 9(2), 159–167.CrossRefGoogle Scholar
  13. Chee-Sanford, J. C., Mackie, R. I., Koike, S., Krapac, I. G., Lin, Y., Yannarell, A. C., et al. (2009). Fate and transport of antibiotic residues and antibiotic resistance genes following land application of manure waste. Journal of Environmental Quality, 38, 1086–1108.CrossRefGoogle Scholar
  14. CLSI. (2013). Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Third Informational Supplement. CLSI document M100-S23, Clinical and Laboratory Standards Institute, Wayne, P.A.Google Scholar
  15. Core Team, R. (2013). R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.Google Scholar
  16. Cui, L., Tominaga, E., Neoh, H., & Hiramatsu, K. (2006). Correlation between reduced daptomycin susceptibility and vancomycin resistance in vancomycin-intermediate Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 50(3), 1079–1082.CrossRefGoogle Scholar
  17. Dai, L., Wu, C.-M., Wang, M.-G., Wang, Y., Wang, Y., Xia, L.-N., et al. (2010). First report of the multidrug resistance gene cfr and the phenicol resistance gene fexA in a Bacillus strain from swine feces. Antimicrobial Agents and Chemotherapy, 54(9), 3953–3955.CrossRefGoogle Scholar
  18. Edwards, J. E., McEwan, N. R., & Wallace, R. J. (2008). Adaptation to flavomycin in the ruminal bacterium, Prevotella bryantii. Journal of Applied Microbiology, 104, 1617–1623.CrossRefGoogle Scholar
  19. Efron, B., & Tibshirani, R. J. (1998). An introduction to the bootstrap. Boca Raton: Chapman and Hall/CRC.Google Scholar
  20. FDA. (2012). Estimates of antibacterial drug sales in human medicine. U.S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of Surveillance and Epidemiology, Silver Spring, M.D.Google Scholar
  21. FDA. (2013). 2011 Summary report on antimicrobials sold or distributed for use in food-producing animals. U.S. Food and Drug Administration, Center for Veterinary Medicine, Rockville, M.D.Google Scholar
  22. Feinmen, S. E. (1998). Antibiotics in animal feed: drug resistance revisited. American Society for Microbiology News, 64, 24–30.Google Scholar
  23. Gilchrist, M. J., Greko, C., Wallinga, D. B., Beran, G. W., Riley, D. G., & Throne, P. S. (2007). The potential role of concentrated animal feeding operations in infectious disease epidemics and antibiotic resistance. Environmental Health Perspectives, 115(2), 313–316.CrossRefGoogle Scholar
  24. Guerra, B., Junker, E., Schroeter, A., Malorny, B., Lehmann, S., & Helmuth, R. (2003). Phenotypic and genotypic characterization of antimicrobial resistance in German Escherichia coli isolates from cattle, swine and poultry. Journal of Antimicrobial Chemotherapy, 52, 489–492.CrossRefGoogle Scholar
  25. Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning (2nd ed.). New York: Springer.CrossRefGoogle Scholar
  26. Hershberger, E., Donabedian, S., Konstantinou, K., & Zervos, M. J. (2003). Quinupristin-dalfopristin resistance in gram-positive bacteria: mechanism of resistance and epidemiology. Clinical Infectious Diseases, 38(1), 92–98.CrossRefGoogle Scholar
  27. Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics, 6, 65–70.Google Scholar
  28. Holzen, C. S., Harms, K. S., Schwaiger, K., & Bauer, J. (2010). Resistance to linezolid in a porcine Clostridium perfringens strain carrying a mutation in the rplD gene encoding the ribosomal protein L4. Antimicrobial Agents and Chemotherapy, 54(3), 1351–1353.CrossRefGoogle Scholar
  29. Jackson, C. R., Lombard, J. E., Dargatz, D. A., & Fedorka-Cray, P. J. (2010). Prevalence, species distribution and antimicrobial resistance of enterococci isolated from US dairy cattle. Letters in Applied Microbiology, 52, 41–48.CrossRefGoogle Scholar
  30. Kaufman, L., & Rousseuw, P. J. (1990). Finding groups in data. New York: Wiley.CrossRefGoogle Scholar
  31. Khachatourians, G. G. (1998). Agricultural use of antibiotics and the evolution and transfer of antibiotic-resistant bacteria. Canadian Medical Association Journal, 159, 1129–1136.Google Scholar
  32. Klare, I., Konstabel, C., Badstubner, D., Werner, G., & Witte, W. (2003). Occurrence and spread of antibiotic resistances in Enterococcus faecium. International Journal of Food Microbiology, 88, 269–290.CrossRefGoogle Scholar
  33. Kummerer, K. (2004). Resistance in the environment. Journal of Antimicrobial Chemotherapy, 54, 311–320.CrossRefGoogle Scholar
  34. Lanz, R., Kuhnert, P., & Boerlin, P. (2003). Antimicrobial resistance and resistance gene determinants in clinical Escherichia coli from different animal species in Switzerland. Veterinary Microbiology, 91, 73–84.CrossRefGoogle Scholar
  35. Li, X.-Z. (2005). Quinolone resistance in bacteria: emphasis on plasmid-mediated mechanisms. International Journal of Antimicrobial Agents, 25, 453–463.CrossRefGoogle Scholar
  36. Li, X.-Z., Mehrothra, M., Ghimire, S., & Adewoye, L. (2007). Beta-lactam resistance and beta-lactamases in bacteria of animal origin. Veterinary Microbiology, 121, 197–214.CrossRefGoogle Scholar
  37. Li, X., Watanabe, N., Xiao, C., Harter, T., McCowan, B., Liu, Y., et al. (2014). Antibiotic-resistant E. coli in surface water and groundwater in dairy operations in Northern California. Environmental Monitoring and Assessment, 186(2), 1253–1260.CrossRefGoogle Scholar
  38. Lorimar, J. (2001). Soil infiltration and wetland treatment of feedlot runoff. 2001 Beef Research Report, A.S. Leaflet R1744, Iowa State University, Ames, IA.Google Scholar
  39. Manson, J. M., Keis, S., Smith, J. M., & Cook, G. M. (2004). Acquired bacitracin resistance in Enterococcus faecalis is mediated by an ABC transporter and a novel regulatory protein, BcrR. Antimicrobial Agents and Chemotherapy, 48(10), 3743–3748.CrossRefGoogle Scholar
  40. McEwen, S. A., & Fedorka-Cray, P. J. (2002). Antimicrobial use and resistance in animals. Clinical Infectious Diseases, 34(Suppl 3), S93–S106.CrossRefGoogle Scholar
  41. Mulvey, M. R., Suskey, E., McCracken, M., Morck, D. W., & Read, R. R. (2009). Similar cefoxitin-resistance plasmids circulating in Escherichia coli from human and animal sources. Veterinary Microbiology, 134, 279–287.CrossRefGoogle Scholar
  42. NARMS. (2010). National Antimicrobial Resistance Monitoring System: NARMS 2010 Animal Arm Annual Report. U.S. Department of Agriculture, Agricultural Research Service, Bacterial Epidemiology and Antimicrobial Resistance Unit, Athens, G.A.Google Scholar
  43. NARMS. (2011). National Antimicrobial Resistance Monitoring System: NARMS Retail Meat Annual Report, 2011. U.S. Food and Drug Administration, Center for Veterinary Medicine, Rockville, M.D.Google Scholar
  44. Nikaido, H. (2009). Multidrug resistance in bacteria. Annual Review of Biochemistry, 78, 119–146.CrossRefGoogle Scholar
  45. Nilsson, O. (2012). Vancomycin resistant enterococci in farm animals—occurrence and importance. Infection Ecology and Epidemiology, 2, 16959.CrossRefGoogle Scholar
  46. Ostash, B., & Walker, S. (2010). Moenomycin family antibiotics: chemical synthesis, biosynthesis, and biological activity. Natural Product Reports, 27, 1594–1617.CrossRefGoogle Scholar
  47. Rodrigues-Palacios, A., Koohmaraie, M., & LeJeune, J. (2011). Prevalence, enumeration, and antimicrobial agent resistance of Clostridium difficile in cattle at harvest in the United States. Journal of Food Protection, 74(10), 1618–1624.CrossRefGoogle Scholar
  48. Rogers, S., Donnelly, M., Peed, L., Kelty, C., Mondal, S., Zhong, Z., et al. (2011). Decay of bacterial pathogens, fecal indicators, and real-time quantitative PCR genetic markers in manure-amended soils. Applied and Environmental Microbiology, 77(14), 4839–4848.CrossRefGoogle Scholar
  49. Ruzauskas, M., Virgailis, M., Siugždinienė, R., Sužiedėlienė, E., Seputienė, V., Daugelavičius, R., et al. (2009). Antimicrobial resistance of Enterococcus spp. isolated from livestock in Lithuania. Veterinarski Arhiv, 79(5), 439–449.Google Scholar
  50. Rysz, J., & Alvarez, P. J. J. (2004). Amplification and attenuation of tetracycline resistance in soil bacteria: aquifer column experiments. Water Research, 38, 3705–3712.CrossRefGoogle Scholar
  51. Sayah, R. S., Kaneene, J. B., Johnson, Y., & Miller, R. A. (2005). Patterns of antimicrobial resistance observed in Escherichia coli isolates obtained from domestic- and wild-animal fecal samples, human septage, and surface water. Applied and Environmental Microbiology, 71(3), 1394–1404.CrossRefGoogle Scholar
  52. Schwaber, M. J., Navon-Venezia, S., Schwartz, D., & Carmeli, Y. (2005). High levels of antimicrobial coresistance among extended-spectrum-β-lactamase-producing Enterobacteriaceae. Antimicrobial Agents and Chemotherapy, 49(5), 2137–2139.CrossRefGoogle Scholar
  53. Seiffert, S. N., Hilty, M., Perreten, V., & Endimiani, A. (2013). Extended-spectrum cephalosporin-resistant gram-negative organisms in livestock: an emerging problem for human health? Drug Resistance Updates, 16(1–2), 22–45.CrossRefGoogle Scholar
  54. Shaaly, A., Kalamorz, F., Gebhard, S., & Cook, G. M. (2013). Undecaprenyl pyrophosphate phosphatase confers low-level resistance to bacitracin in Enterococcus faecalis. Journal of Antimicrobial Chemotherapy, 68(7), 1583–1593.CrossRefGoogle Scholar
  55. Srinivasan, V., Gillespie, B. E., Lewis, M. J., Nguyen, L. T., Headrick, S. I., Schukken, Y. H., et al. (2007). Phenotypic and genotypic antimicrobial resistance patterns of Escherichia coli isolated from dairy cows with mastitis. Veterinary Microbiology, 124, 319–328.CrossRefGoogle Scholar
  56. USEPA. (2005). Detecting and mitigating the environmental impact of fecal pathogens originating from confined animal feeding operations: review. EPA/600/R-06/021, U.S. Environmental Protection Agency, Cincinnati, O.H.Google Scholar
  57. Vilhena, C., & Bettencourt, A. (2012). Daptomycin: a review of properties, clinical use, drug delivery and resistance. Mini-Reviews in Medicinal Chemistry, 12(3), 1–8.CrossRefGoogle Scholar
  58. Wang, Y., Wu, C., Zhang, Q., Qi, J., Liu, H., Wang, Y., et al. (2012). Identification of New Delhi metallo-β-lactamase 1 in Acinetobacter lwoffii of food animal origin. PLoS ONE, 7(5), e37152.CrossRefGoogle Scholar
  59. Werner, G. (2012). Current trends of emergence and spread of vancomycin-resistant enterococci. In M. Pana (Ed.), Antibiotic resistant bacteria—a continuous challenge in the new millennium (pp. 303–354). New York: InTech.Google Scholar
  60. Yang, H., Dettman, B., Beam, J., Mix, C., & Jiang, X. (2006). Occurrence of ceftriaxone-resistant commensual bacteria on a dairy farm and a poultry farm. Canadian Journal of Microbiology, 52, 942–950.CrossRefGoogle Scholar
  61. Zhao, S., Fedorka-Cray, P. J., Friedman, S., McDermott, P. F., Walker, R. D., Qaiyumi, S., et al. (2005). Characterization of Salmonella typhimurium of animal origin obtained from the National Antimicrobial Resistance Monitoring System. Foodborne Pathogens and Disease, 2(2), 169–181.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland (outside the USA) 2014

Authors and Affiliations

  • Michael A. Jahne
    • 1
  • Shane W. Rogers
    • 2
    • 6
  • Ivan P. Ramler
    • 3
  • Edith Holder
    • 4
  • Gina Hayes
    • 5
    • 7
  1. 1.Institute for a Sustainable EnvironmentClarkson UniversityPotsdamUSA
  2. 2.National Risk Management Research LaboratoryU.S. Environmental Protection AgencyCincinnatiUSA
  3. 3.Department of Mathematics, Computer Science, and StatisticsSt. Lawrence UniversityCantonUSA
  4. 4.Pegasus Technical ServicesCincinnatiUSA
  5. 5.Institute for the Environment and SustainabilityMiami UniversityOxfordUSA
  6. 6.Department of Civil and Environmental EngineeringClarkson UniversityPotsdamUSA
  7. 7.Ohio EPALazarus Government CenterColumbusUSA

Personalised recommendations