Optimization of factors affecting hexavalent chromium removal from simulated electroplating wastewater by synthesized magnetite nanoparticles

  • Mitra Ataabadi
  • Mehran Hoodaji
  • Arezoo Tahmourespour
  • Mahmoud Kalbasi
  • Majid Abdouss


Hexavalent chromium is a mutagen and carcinogen that is of significant concern in water and wastewater. In the present study, magnetite nanoparticles (n-Mag) were investigated as a potential remediation technology for the decontamination of Cr (VI)-contaminated wastewater. Synthesized n-Mag was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and BET-N2 technology. To screen and optimize the factors affecting Cr (VI) removal efficiency by synthesized nanoparticles, Plackett-Burman (PB) and Taguchi experimental designs were used respectively. The crystalline produced n-Mag was in the size range of 60–70 nm and had a specific surface area (SSA) of 31.55 m2 g−1. Results of PB design showed that the most significant factors affecting Cr (VI) removal efficiency were initial Cr (VI) concentration, pH, n-Mag dosage, and temperature. In a pH of 2, 20 mg L−1 of Cr (VI) concentration, 4 g L−1of n-Mag, temperature of 40 °C, 220 rpm of shaking speed, and 60 min of contact time, the complete removal efficiency of Cr (VI) was achieved. Batch experiments revealed that the removal of Cr (VI) by n-Mag was consistent with pseudo-second order reaction kinetics. The competition from common coexisting ions such as NO3 , SO4 2−, and Cl were not considerable, unless in the higher concentration of SO4 2−. These results indicated that the readily synthesized magnetite nanoparticles have promising applications for the removal of Cr (VI) from aqueous solution.


Magnetite nanoparticle Cr (VI) Wastewater Optimization Plackett–Burman Taguchi design 



The authors would like to thank Dr. Abbas Abed-Esfahani for his valuable scientific guidance.


  1. Abdel-Fattah, Y. R., Saeed, H. M., Gohar, Y. M., & El-Baz, M. A. (2005). Improved production of Pseudomonas aeruginosa uricase by optimization of process parameters through statistical experimental designs. Process Biochemistry, 40, 1707–1714.CrossRefGoogle Scholar
  2. Acar, F. N., & Malkoc, E. (2004). The removal of chromium (VI) from aqueous solutions by Fagusorientalis L. Bioresource Technology, 94, 13–15.CrossRefGoogle Scholar
  3. Amin, M. M., Khodabakhshi, A., Mozafari, M., Bina, B., & Kheiri, S. (2010). Removal of Cr(VI) from simulated electroplating wastewater by magnetite nanoparticles. Environmental Engineering and Management Journal, 9(7), 921–927.Google Scholar
  4. Auffan, M., Shipley, H. J., Yean, S., Kan, A. T., Tomson, M., Rose, J., & Bottero, J. Y. (2007). Nanomaterials as adsobents. In M. R. Wiesner & J. Y. Bottero (Eds.), Environmental Nanotechnology: Applications and Impacts of Nanomaterials (pp. 371–392). New York: McGraw-Hill.Google Scholar
  5. Banerjee, S. S., & Chen, D. H. (2007). Fast removal of copper ions by gum Arabic modified magnetic nano-adsorbent. Journal of Hazardous Materials, 147, 792–799.CrossRefGoogle Scholar
  6. Barnhart, J. (1997). Occurrences, uses, and properties of chromium. Regulatory Toxicology and Pharmacology, 26, S3–S7.CrossRefGoogle Scholar
  7. Booker, N. A., Keir, D., Priestley, A. J., Ritchie, C. B., Sudarmana, D. L., & Woods, M. A. (1991). Sewage clarification with magnetite particles. Water Science and Technology, 23, 1703–1712.Google Scholar
  8. Chen, S., Zou, Y., Yan, Z., Shen, W., Shi, S., Zhang, X., & Wang, H. (2009). Carboxymethylatedbacterial cellulose for copper and lead ion removal. Journal of Hazardous Materials, 161, 1355–1359.CrossRefGoogle Scholar
  9. Chen, Y., Pan, B., Li, H., Zhang, W., Lv, L., & Wu, J. (2010). Selective removal of Cu(II) ions by using cation-exchange resin-supported polyethyleneimine (PEI) nanoclusters. Environmental Science and Technology, 44, 3508–3513.CrossRefGoogle Scholar
  10. Clesceri, L. S., Greenberg, A. E., Eaton, A. D., & Franson, M. A. (2005). Standard methods for the examination of water and wastewater. Washington: American Public Health Association (APHA).Google Scholar
  11. Deng, L., Zhang, Y., Qin, J., Wang, X., & Zhu, X. (2009). Biosorption of Cr(VI) from aqueous solutions by nonliving green algae Cladophoraalbida. Minerals Engineering, 22, 372–377.CrossRefGoogle Scholar
  12. Do, T. M., & Suh, Y. J. (2013). Removal of aqueous Cr(VI) using magnetite nanoparticles synthesized from a low grade iron ore. Particle and Aerosol Res, 9(4), 221–230.CrossRefGoogle Scholar
  13. Dogan, M., & Alkan, M. (2003). Adsorption kinetics of methyl violet onto perlite. Chemosphere, 50(4), 517–528Google Scholar
  14. Geng, B., Jin, Z., Li, T., & Qi, X. (2009). Kinetics of hexavalent chromium removal from water by chitosan-Fe0 nanoparticles. Chemosphere, 75, 825–830.CrossRefGoogle Scholar
  15. Goyal, N., Jain, S. C., & Banerjee, U. C. (2003). Comparative studies on the microbial adsorption of heavy metals. Advances in Environmental Research, 7, 311–319.CrossRefGoogle Scholar
  16. He, F., & Zhao, D. (2005). Preparation and characterization of a new class of starch-stabilized bimetallic nanoparticles for degradation of chlorinated hydrocarbons in water. Environmental Science and Technology, 39, 3314–3320.CrossRefGoogle Scholar
  17. Ho, Y. S., & McKay, G. (1999). Pseudo-second order model for sorption processes. Process Biochemistry, 34, 451–465.CrossRefGoogle Scholar
  18. Ho, Y. S., Ng, J. C. Y., & Mckay, G. (2001). Removal of lead (II) from effluents by sorption onpeat using second-order kinetics. Separation Science and Technology, 36, 241–261.CrossRefGoogle Scholar
  19. Hu, J., Chen, G., & Lo, I. (2005). Removal and recovery of Cr (VI) from wastewater by maghernite nanoparticles. Water Research, 39, 4528–4536.CrossRefGoogle Scholar
  20. Hu, J., Lo, I. M. C., & Chen, G. (2004). Removal of Cr(VI) by magnetite nanoparticle. Water Science and Technology, 50, 139–146.Google Scholar
  21. Ivanov, V., Tay, J. H., Tay, S. T. L., & Jiang, H. L. (2004). Removal of micro-particles by microbial granules used for aerobic wastewater treatment. Water Science and Technology, 50, 147–154.Google Scholar
  22. Jiang, J., Xu, R., Wang, Y., & Zhao, A. (2008). The mechanism of chromate sorption by three variable charge soils. Chemosphere, 71, 1469–1475.CrossRefGoogle Scholar
  23. Jiwalak, N., Rattanaphani, S., Bremner, J. B., & Rattanaphani, V. (2010). Equilibrium and kinetic modeling of the adsorption of indigo carmine onto silk. Fibers and Polymers, 11(4), 572–579.CrossRefGoogle Scholar
  24. Khodabakhshi, A., Amin, M. M., & Mozaffari, M. (2011). Synthesis of magnetite nanoparticles and evaluation of its efficiency for arsenic removal from simulated industrial wastewater. Iranian Journal of Environmental Health Science & Engineering, 8(3), 189–200.Google Scholar
  25. Kimbrough, D. E., Cohen, Y., & Winer, A. M. (1999). A critical assessment of chromium in the environment. Critical Reviews in Environmental Science and Technology, 29, 1–46.CrossRefGoogle Scholar
  26. Kumar, P., & Satyanarayana, T. (2007). Optimization of culture variables for improving glucoamylase production by alginate-entrapped Thermomucor indicae-seudaticae using statistical methods. Bioresource Technology, 98, 1252–1259.CrossRefGoogle Scholar
  27. Linnikov, O., Rodina, I., Shevchenko, V., Medvedeva, I., Uimin, M., Schegoleva, N., Yermakov, A., Platonov, V., & Osipov, V. (2014). Removal of Cr(VI) from aqueous solutions by magnetite nanoparticles. Desalination and Water Treatment, 52, 324–330.Google Scholar
  28. Lodeiro, P., Cordero, B., Grille, Z., Herrero, R., & Sastre de Vicente, M. E. (2004). Physicochemical studies of cadmium (II) biosorption by the invasive algain europe Sargassummuticum. Biotechnology and Bioengineering, 88, 237–247.CrossRefGoogle Scholar
  29. Mannahan, S. E. (1992). Fundamentals of environmental chemistry. Chelsea: Lewis Publishers.Google Scholar
  30. Orbell, J. D., Godhino, L., Bigger, S. W., Nguyen, T. M., & Ngeh, L. N. (1997). Oil spill remediation using magnetic particles—an experiment in environmental technology. Journal of Chemical Education, 74, 1446–1448.CrossRefGoogle Scholar
  31. Owlad, M., Kheireddine, M., Wan Daud, W. A., & Baroutian, S. (2009). Removal of hexavalent chromium-contaminated water and wastewater: a review. Water, Air, & Soil Pollution, 200(1–4), 59–77.CrossRefGoogle Scholar
  32. Pang, Y., Zeng, G., Tang, L., Zhang, Y., Liu, Y., Lei, X., Li, Z., Zhang, J., Liu, Z., & Xiong, Y. (2011). Preparation and application of stability enhanced magnetic nanoparticles for rapid removal of Cr(VI). Chemical Engineering Journal, 175, 222–227.CrossRefGoogle Scholar
  33. Pankhurst, Q. A., Connolly, J., Jones, S. K., & Dobson, J. (2003). Applications of magnetic nanoparticles in biomedicine. Journal of Physics D-Applied Physics, 36(13), 167–181.CrossRefGoogle Scholar
  34. Perezcandela, M., Martinmartinez, J. M., & Torregrosamacia, R. (1995). Chromium(VI) removal with activated carbons. Water Research, 29, 2174–2180.CrossRefGoogle Scholar
  35. Plackett, R. L., & Burman, J. P. (1946). The design of optimum multifactorial experiments. Biometrika, 33, 305–325.CrossRefGoogle Scholar
  36. Quintelas, C., Sousa, E., Silva, F., Neto, S., & Tavares, T. (2006). Competitive biosorption of ortho-cresol, phenol, chlorophenol and chromium (VI) from aqueous solution by a bacterial biofilm supported on granular activated carbon. Process Biochemistry, 41, 2087–2091.CrossRefGoogle Scholar
  37. Ramnani, S. P., & Sabhawal, S. (2006). Adsorption behaviour of Cr(VI) onto radiation cross linked chitosan and its possible application for the treatment of wastewater containing Cr(VI). Reactive and Functional Polymers, 66, 902–909.CrossRefGoogle Scholar
  38. Reed, B. E., & Matsumoto, M. R. (1993). Modeling cadmium adsorption by activated carbon using the Langmuir and Freundlich isotherm expressions. Separation Science and Technology, 28(13–14), 2179–2195.CrossRefGoogle Scholar
  39. Sarin, V., & Pant, M. M. (2006). Removal of chromium from industrial waste by using eucalyptus bark. Bioresource Technology, 97(1), 15–20.CrossRefGoogle Scholar
  40. Schulte, J., & Dutta, J. (2005). Nanotechnology in environmental protection and pollution. Science and Technology of Advanced Materials, 6, 219–220.CrossRefGoogle Scholar
  41. Shi, L., Zhang, X., & Chen, Z. (2011). Removal of chromium (VI) from wastewater using bentonite-supported nanoscale zero-valent iron. Water Research, 45, 886–892.CrossRefGoogle Scholar
  42. Tartaj, P. (2006). Nanomagnets: from fundamental physics to biomedicine. Current Nanoscience, 2, 43–53.CrossRefGoogle Scholar
  43. Unnithan, M. R., & Anirudhan, T. S. (2001). The kinetics and thermodynamics of sorption of chromium (VI) onto the iron (III) complex of a carboxylated polyacrylamide-grafted sawdust. Industrial& Engineering Chemistry Research, 40(12), 2693–2701.CrossRefGoogle Scholar
  44. Wei, J. J., Xu, X. H., & Liu, Y. (2004). Kinetics and mechanism of dechlorination of o-chlorophenol by nanoscale Pd/Fe. Chemical Research in Chinese Universities, 20, 73–76.Google Scholar
  45. Yuan, P., Fana, M., Yanga, D., Hea, H., Liua, D., Yuan, A., Zhu, J., & Chen, T. (2009). Montmorillonite-supported magnetite nanoparticles for the removal of hexavalent chromium [Cr(VI)] from aqueous solutions. Journal of Hazardous Materials, 166, 821–829.CrossRefGoogle Scholar
  46. Yuan, P., Liu, D., Fan, M., Yang, D., Zhu, R., Ge, F., Zhu, J. X., & He, H. (2010). Removal of hexavalent chromium [Cr(VI)] from aqueous solutions by the diatomite-supported/unsupported magnetite nanoparticles. Journal of Hazardous Materials, 173, 614–621.Google Scholar
  47. Zhao, X., Guo, X., Yang, Z., Liu, H., & Qian, Q. (2011). Phase-controlled preparation of iron (oxyhydr)oxide nanocrystallines for heavy metal removal. Journal of Nanoparticle Research, 13, 2853–2864.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Mitra Ataabadi
    • 1
  • Mehran Hoodaji
    • 1
  • Arezoo Tahmourespour
    • 2
  • Mahmoud Kalbasi
    • 1
  • Majid Abdouss
    • 3
  1. 1.Soil Sciences DepartmentIslamic Azad University, Isfahan (Khorasgan) BranchIsfahanIran (IR)
  2. 2.Basic Medical Sciences DepartmentIslamic Azad University, Isfahan (Khorasgan) BranchIsfahanIran (IR)
  3. 3.Chemistry DepartmentAmirkabir University of TechnologyTehranIran (IR)

Personalised recommendations