Skip to main content

Advertisement

Log in

Dominance of cyanobacterial and cryptophytic assemblage correlated to CDOM at heavy metal contamination sites of Gujarat, India

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Industrial clusters of Gujarat, India, generate high quantity of effluents which are received by aquatic bodies such as estuary and coastal water. In the present study, microalgal assemblage, heavy metals, and physico-chemical variables were studied from different habitats. Principal component analysis revealed that biovolume of cyanobacterial and cryptophytic community positively correlated with the heavy metal concentration (Hg, As, Zn, Fe, Mo, Ni, and Co) and chromophoric dissolved organic matter (CDOM) under hypoxic environment. Green algae and diatoms dominated at comparatively lower nitrate concentration which was positively associated with Pb and Mn.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Arceivala, S. J., & Asolekar, S. R. (2007). Wastewater treatment for pollution control and reuse. Tata McGraw-Hill Education.

  • Buchaca, T., Felip, M., & Catalan, J. (2005). A comparison of HPLC pigment analyses and biovolume estimates of phytoplankton groups in an oligotrophic lake. Journal of Plankton Research, 27(1), 91–101.

  • Camargo, J. A., & Alonso, Á. (2006). Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: a global assessment. Environment International, 32(6), 831–849.

    Article  CAS  Google Scholar 

  • Carpenter, S., Kitchell, J., & Hodgson, J. (1985). Cascading trophic interactions and lake productivity. BioScience, 35(10), 634–639.

    Article  Google Scholar 

  • Catherine, A., Escoffier, N., Belhocine, A., Nasri, A. B., Hamlaoui, S., Yéprémian, C., Bernard, C., & Troussellier, M. (2012). On the use of the FluoroProbe®, a phytoplankton quantification method based on fluorescence excitation spectra for large-scale surveys of lakes and reservoirs. Water Research, 46(6), 1771–1784.

    Article  CAS  Google Scholar 

  • Chen, C. Y., & Durbin, E. G. (1994). Effects of pH on the growth and carbon uptake of marinephytoplankton. Marine Ecology Progress Series, 109(1), 83–94.

  • Chen, R. F., Bissett, P., Coble, P., Conmy, R., Gardner, G. B., Moran, M. A., Wanga, X., Wells, M. L., Whelan, P., & Zepp, R. G. (2004). Chromophoric dissolved organic matter (CDOM) source characterization in the Louisiana Bight. Marine Chemistry, 89(1), 257–272.

  • Conley, D. J., Paerl, H. W., Howarth, R. W., Boesch, D. F., Seitzinger, S. P., Havens, K. E., & Likens, G. E. (2009). Controlling eutrophication: nitrogen and phosphorus. Science, 323(5917), 1014–1015.

    Article  CAS  Google Scholar 

  • Craigie, J. T., & McLachlan, J. (1964). Excretion of colored ultraviolet-absorbing substances by marine algae. Canadian Journal of Botany, 42(1), 23–33.

    Article  CAS  Google Scholar 

  • Desikachary, T. V. (1959). Cyanophyta. 686 pp. Indian Council of Agricultural Research, New Delhi.

  • Fiore, M. F., & Trevors, J. T. (1994). Cell composition and metal tolerance in cyanobacteria. BioMetals, 7(2), 83–103.

    Article  CAS  Google Scholar 

  • Gaur, J. P., & Rai, L. C. (2001). Heavy metal tolerance in algae (In Algal Adaptation to Environmental Stresses, pp. 363–388). Berlin Heidelberg: Springer.

    Google Scholar 

  • Gosselain, V., Hamilton, P. B., & Descy, J. P. (2000). Estimating phytoplankton carbon from microscopic counts: an application for riverine systems. Hydrobiologia, 438(1–3), 75–90.

    Article  CAS  Google Scholar 

  • Graff, J. R., Milligan, A. J., & Behrenfeld, M. J. (2012). The measurement of phytoplankton biomass using flow-cytometric sorting and elemental analysis of carbon. Limnol. Oceanogr.: Methods, 10, 910–920.

  • Grasshoff, K., Kremling, K., & Ehrhardt, M. (1999). Methods of seawater analysis. Third, completely revised and extended edition. Wiley-VCH, Weinheim, 77(89), 160.

  • Guo, W., Cheng, Y., & Wu, F. (2007). An overview of marine fluorescent dissolved organic matter [j]. Marine Science Bulletin, 1, 016.

    Google Scholar 

  • Hill, W. R., & Larsen, I. L. (2005). Growth dilution of metals in microalgal biofilms. Environmental Science and Technology, 39(6), 1513–1518.

    Article  CAS  Google Scholar 

  • Hornstrom, E. (1990). Toxicity test with algae—a discussion on the batch method. Ecotoxicology and Environmental Safety, 20, 343–353.

    Article  CAS  Google Scholar 

  • Islam, S., & Tanaka, M. (2004). Impacts of pollution on coastal and marine ecosystems including coastal and marine fisheries and approach for management: a review and synthesis. Marine Pollution Bulletin, 48(7), 624–649.

    Article  CAS  Google Scholar 

  • Ivorra, N., Bremer, S., Guasch, H., Kraak, M. H., & Admiraal, W. (2000). Differences in the sensitivity of benthic microalgae to Zn and Cd regarding biofilm development and exposure history. Environmental Toxicology and Chemistry, 19(5), 1332–1339.

    Article  CAS  Google Scholar 

  • Kiran, B., Kaushik, A., & Kaushik, C. P. (2008). Metal–salt co-tolerance and metal removal by indigenous cyanobacterial strains. Process Biochemistry, 43(6), 598–604.

    Article  CAS  Google Scholar 

  • Kirillova, E. N., Andersson, A., Han, J., Lee, M., & Gustafsson, Ö. (2014). Sources and light absorption of water-soluble organic carbon aerosols in the outflow from northern China. Atmospheric Chemistry and Physics, 14(3), 1413–1422.

    Article  CAS  Google Scholar 

  • Latała, A., Stepnowski, P., Nędzi, M., & Mrozik, W. (2005). Marine toxicity assessment of imidazolium ionic liquids: Acute effects on the Baltic algae Oocystis submarina and Cyclotella meneghiniana. Aquatic Toxicology, 73(1), 91–98.

  • Mandal, S. K., & Joshi, H. V. (2005). Impact of ship-breaking activities on the coastal seawater at Alang. Gulf of Cambay, Gujarat (India): Pollution in Urban Industrial Environment. 149.

    Google Scholar 

  • Metting, F. B., Jr. (1996). Biodiversity and application of microalgae. Journal of Industrial Microbiology, 17(5–6), 477–489.

    Article  CAS  Google Scholar 

  • Mishra, S. K., Shrivastav, A., Maurya, R. R., Patidar, S. K., Haldar, S., & Mishra, S. (2012). Effect of light quality on the C-phycoerythrin production in marine cyanobacteria Pseudanabaena sp. isolated from Gujarat coast, India. Protein Expression and Purification, 81(1), 5–10.

    Article  CAS  Google Scholar 

  • Mur, R., Skulberg, O. M., & Utkilen, H. (1999). Cyanobacteria in the environment. http://cdrwww.who.int/entity/water_sanitation_health/resourcesquality/toxcyanchap2.pdf.

  • Oren, A. (2014). Cyanobacteria: biology, ecology and evolution. Cyanobacteria: an economic perspective, 1-20.

  • Paerl, H. (2008). Nutrient and other environmental controls of harmful cyanobacterial blooms along the freshwater–marine continuum (In cyanobacterial harmful algal blooms: state of the science and research needs, pp. 217–237). New York: Springer.

    Google Scholar 

  • Parikh, A., Shah, V., & Madamwar, D. (2006a). Cyanobacterial flora from polluted industrial effluents. Environmental Monitoring and Assessment, 116(1–3), 91–102.

    Article  CAS  Google Scholar 

  • Parikh, A., Shah, V., & Madamwar, D. (2006b). Cyanobacterial flora from polluted marine shores. Environmental Monitoring and Assessment, 120(1–3), 407–414.

    Article  CAS  Google Scholar 

  • Patrick, R. (1978). Effects of Trace Metals in the Aquatic Ecosystem: The diatom community, base of the aquatic food chain, undergoes significant changes in the presence of trace metals and other alterations in water chemistry. American Scientist, 185–191.

  • Pinckney, J. B. M. B., Paerl, H. W., & Bebout, B. M. (1995). Salinity control of benthic microbial mat community production in a Bahamian hypersaline lagoon. Journal of experimental marine biology and ecology, 187(2), 223–237.

  • Pinilla, G. A. (2006). Vertical distribution of phytoplankton in a clear water lake of Colombian Amazon (Lake Boa, Middle Caquetá). Hydrobiologia, 568(1), 79–90.

  • Rai, S., Pandey, S., Shrivastava, A. K., Singh, P. K., Agrawal, C., & Rai, L. C. (2013). 4 Understanding the Mechanisms of Abiotic Stress Management in Cyanobacteria with Special Reference to Proteomics. Stress Biology of Cyanobacteria: Molecular Mechanisms to Cellular Responses, 93.

  • Ramakrishnan, B., Megharaj, M., Venkateswarlu, K., Naidu, R., & Sethunathan, N. (2010). The impacts of environmental pollutants on microalgae and cyanobacteria. Critical Reviews in Environmental Science and Technology, 40(8), 699–821.

    Article  CAS  Google Scholar 

  • Rathi, A. K. A. (2003). Promotion of cleaner production for industrial pollution abatement in Gujarat (India). Journal of Cleaner Production, 11(5), 583–590.

    Article  Google Scholar 

  • Rijstenbil, J. W., Derksen, J. W. M., Gerringa, L. J. A., Poortvliet, T. C. W., Sandee, A., Van den Berg, M., Drie, J. V., & Wijnholds, J. A. (1994). Oxidative stress induced by copper: defense and damage in the marine planktonic diatom Ditylum brightwellii, grown in continuous cultures with high and low zinc levels. Marine Biology, 119(4), 583–590.

  • Rippka, R. (1988). Isolation and purification of cyanobacteria. Methods in enzymology, 167, 3.

  • Rochelle-Newall, E. J., & Fisher, T. R. (2002). Production of chromophoric dissolved organic matter fluorescence in marine and estuarine environments: an investigation into the role of phytoplankton. Marine Chemistry, 77(1), 7–21.

    Article  CAS  Google Scholar 

  • Salve, P. R., Lohkare, H., Gobre, T., Bodhe, G., Krupadam, R. J., Ramteke, D. S., & Wate, S. R. (2012). Characterization of chromophoric dissolved organic matter (CDOM) in rainwater using fluorescence spectrophotometry. Bulletin of Environmental Contamination and Toxicology, 88(2), 215–218.

    Article  CAS  Google Scholar 

  • Sayre, R. (2010). Microalgae: the potential for carbon capture. Bioscience, 60(9), 722–727.

    Article  Google Scholar 

  • Schwarzenbach, R. P., Escher, B. I., Fenner, K., Hofstetter, T. B., Johnson, C. A., Von Gunten, U., & Wehrli, B. (2006). The challenge of micropollutants in aquatic systems. Science, 313(5790), 1072–1077.

    Article  CAS  Google Scholar 

  • See, J. H., Campbell, L., Richardson, T. L., Pinckney, J. L., Shen, R., & Guinasso, N. L. (2005). Combining new technologies for determination of phytoplankton community structure in the northern Gulf of Mexico. Journal of Phycology, 41(2), 305–310.

    Article  Google Scholar 

  • Shehata, S. A., Lasheen, M. R., Ali, G. H., & Kobbia, I. A. (1999). Toxic effect of certain metals mixture on some physiological and morphological characteristics of freshwater algae. Water, Air, and Soil Pollution, 110(1–2), 119–135.

    Article  CAS  Google Scholar 

  • Smith, V. H. (2003). Eutrophication of freshwater and coastal marine ecosystems a global problem. Environmental Science and Pollution Research, 10(2), 126–139.

    Article  CAS  Google Scholar 

  • Subashchandrabose, S. R., Ramakrishnan, B., Megharaj, M., Venkateswarlu, K., & Naidu, R. (2013). Mixotrophic cyanobacteria and microalgae as distinctive biological agents for organic pollutant degradation. Environment International, 51, 59–72.

    Article  CAS  Google Scholar 

  • Tiwari, S. P., & Shanmugam, P. (2012). An optical model for the remote-sensing of absorption coefficients of phytoplankton in oceanic/coastal waters. Advances in Remote Sensing, 1, 19.

    Article  Google Scholar 

  • Twardowski, M. S., & Donaghay, P. L. (2001). Separating in situ and terrigenous sources of absorption by dissolved materials in coastal waters. Journal of Geophysical Research, Oceans, 106(C2), 2545–2560 (1978–2012).

    Article  CAS  Google Scholar 

  • Vicente-Martorell, J. J., Galindo-Riaño, M. D., García-Vargas, M., & Granado-Castro, M. D. (2009). Bioavailability of heavy metals monitoring water, sediments and fish species from a polluted estuary. Journal of Hazardous Materials, 162(2), 823–836.

    Article  CAS  Google Scholar 

  • Wang, X., & Zang, S. (2014). Distribution characteristics and ecological risk assessment of toxic heavy metals and metalloid in surface water of lakes in Daqing Heilongjiang Province, China. Ecotoxicology, 23(4), 609–617.

  • Zhou, Q., Zhang, J., Fu, J., Shi, J., & Jiang, G. (2008). Biomonitoring: an appealing tool for assessment of metal pollution in the aquatic ecosystem. Analytica Chimica Acta, 606(2), 135–150.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

CSIR-CSMCRI Registration Number: 078/2014. SKP and KC are thankful to CSIR-NMITLI-MoES, CSC 0105 and CSC 0203 for financial support. KC is thankful to AcSIR for PhD registration. BG is thankful to SERB, New Delhi, for providing fellowship under SERB-Young Scientist scheme (SB/FT/LS 332/2012). Authors deeply acknowledge Dr. Pushpito Ghosh, Director, CSMCRI, and Dr. Arvind Kumar, DC, SMC, CSMCRI, for their constant encouragement. SKP thanks Mr. Rajesh Patidar, Analytical Discipline, CSMCRI, for his kind help in ICP-OES sample analysis. SKP acknowledges Dr. Kamlesh K. Tiwari, SICART, Vallabh Vidyanagar, for useful suggestions during the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandhya Mishra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patidar, S.K., Chokshi, K., George, B. et al. Dominance of cyanobacterial and cryptophytic assemblage correlated to CDOM at heavy metal contamination sites of Gujarat, India. Environ Monit Assess 187, 4118 (2015). https://doi.org/10.1007/s10661-014-4118-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-014-4118-6

Keywords

Navigation