Advertisement

Dominance of cyanobacterial and cryptophytic assemblage correlated to CDOM at heavy metal contamination sites of Gujarat, India

  • Shailesh Kumar Patidar
  • Kaumeel Chokshi
  • Basil George
  • Sourish Bhattacharya
  • Sandhya Mishra
Article

Abstract

Industrial clusters of Gujarat, India, generate high quantity of effluents which are received by aquatic bodies such as estuary and coastal water. In the present study, microalgal assemblage, heavy metals, and physico-chemical variables were studied from different habitats. Principal component analysis revealed that biovolume of cyanobacterial and cryptophytic community positively correlated with the heavy metal concentration (Hg, As, Zn, Fe, Mo, Ni, and Co) and chromophoric dissolved organic matter (CDOM) under hypoxic environment. Green algae and diatoms dominated at comparatively lower nitrate concentration which was positively associated with Pb and Mn.

Keywords

CDOM Heavy metals Hypoxic environment Microalgal assemblage Principal component analysis 

Notes

Acknowledgments

CSIR-CSMCRI Registration Number: 078/2014. SKP and KC are thankful to CSIR-NMITLI-MoES, CSC 0105 and CSC 0203 for financial support. KC is thankful to AcSIR for PhD registration. BG is thankful to SERB, New Delhi, for providing fellowship under SERB-Young Scientist scheme (SB/FT/LS 332/2012). Authors deeply acknowledge Dr. Pushpito Ghosh, Director, CSMCRI, and Dr. Arvind Kumar, DC, SMC, CSMCRI, for their constant encouragement. SKP thanks Mr. Rajesh Patidar, Analytical Discipline, CSMCRI, for his kind help in ICP-OES sample analysis. SKP acknowledges Dr. Kamlesh K. Tiwari, SICART, Vallabh Vidyanagar, for useful suggestions during the study.

References

  1. Arceivala, S. J., & Asolekar, S. R. (2007). Wastewater treatment for pollution control and reuse. Tata McGraw-Hill Education.Google Scholar
  2. Buchaca, T., Felip, M., & Catalan, J. (2005). A comparison of HPLC pigment analyses and biovolume estimates of phytoplankton groups in an oligotrophic lake. Journal of Plankton Research, 27(1), 91–101.Google Scholar
  3. Camargo, J. A., & Alonso, Á. (2006). Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: a global assessment. Environment International, 32(6), 831–849.CrossRefGoogle Scholar
  4. Carpenter, S., Kitchell, J., & Hodgson, J. (1985). Cascading trophic interactions and lake productivity. BioScience, 35(10), 634–639.CrossRefGoogle Scholar
  5. Catherine, A., Escoffier, N., Belhocine, A., Nasri, A. B., Hamlaoui, S., Yéprémian, C., Bernard, C., & Troussellier, M. (2012). On the use of the FluoroProbe®, a phytoplankton quantification method based on fluorescence excitation spectra for large-scale surveys of lakes and reservoirs. Water Research, 46(6), 1771–1784.CrossRefGoogle Scholar
  6. Chen, C. Y., & Durbin, E. G. (1994). Effects of pH on the growth and carbon uptake of marinephytoplankton. Marine Ecology Progress Series, 109(1), 83–94.Google Scholar
  7. Chen, R. F., Bissett, P., Coble, P., Conmy, R., Gardner, G. B., Moran, M. A., Wanga, X., Wells, M. L., Whelan, P., & Zepp, R. G. (2004). Chromophoric dissolved organic matter (CDOM) source characterization in the Louisiana Bight. Marine Chemistry, 89(1), 257–272.Google Scholar
  8. Conley, D. J., Paerl, H. W., Howarth, R. W., Boesch, D. F., Seitzinger, S. P., Havens, K. E., & Likens, G. E. (2009). Controlling eutrophication: nitrogen and phosphorus. Science, 323(5917), 1014–1015.CrossRefGoogle Scholar
  9. Craigie, J. T., & McLachlan, J. (1964). Excretion of colored ultraviolet-absorbing substances by marine algae. Canadian Journal of Botany, 42(1), 23–33.CrossRefGoogle Scholar
  10. Desikachary, T. V. (1959). Cyanophyta. 686 pp. Indian Council of Agricultural Research, New Delhi.Google Scholar
  11. Fiore, M. F., & Trevors, J. T. (1994). Cell composition and metal tolerance in cyanobacteria. BioMetals, 7(2), 83–103.CrossRefGoogle Scholar
  12. Gaur, J. P., & Rai, L. C. (2001). Heavy metal tolerance in algae (In Algal Adaptation to Environmental Stresses, pp. 363–388). Berlin Heidelberg: Springer.Google Scholar
  13. Gosselain, V., Hamilton, P. B., & Descy, J. P. (2000). Estimating phytoplankton carbon from microscopic counts: an application for riverine systems. Hydrobiologia, 438(1–3), 75–90.CrossRefGoogle Scholar
  14. Graff, J. R., Milligan, A. J., & Behrenfeld, M. J. (2012). The measurement of phytoplankton biomass using flow-cytometric sorting and elemental analysis of carbon. Limnol. Oceanogr.: Methods, 10, 910–920.Google Scholar
  15. Grasshoff, K., Kremling, K., & Ehrhardt, M. (1999). Methods of seawater analysis. Third, completely revised and extended edition. Wiley-VCH, Weinheim, 77(89), 160.Google Scholar
  16. Guo, W., Cheng, Y., & Wu, F. (2007). An overview of marine fluorescent dissolved organic matter [j]. Marine Science Bulletin, 1, 016.Google Scholar
  17. Hill, W. R., & Larsen, I. L. (2005). Growth dilution of metals in microalgal biofilms. Environmental Science and Technology, 39(6), 1513–1518.CrossRefGoogle Scholar
  18. Hornstrom, E. (1990). Toxicity test with algae—a discussion on the batch method. Ecotoxicology and Environmental Safety, 20, 343–353.CrossRefGoogle Scholar
  19. Islam, S., & Tanaka, M. (2004). Impacts of pollution on coastal and marine ecosystems including coastal and marine fisheries and approach for management: a review and synthesis. Marine Pollution Bulletin, 48(7), 624–649.CrossRefGoogle Scholar
  20. Ivorra, N., Bremer, S., Guasch, H., Kraak, M. H., & Admiraal, W. (2000). Differences in the sensitivity of benthic microalgae to Zn and Cd regarding biofilm development and exposure history. Environmental Toxicology and Chemistry, 19(5), 1332–1339.CrossRefGoogle Scholar
  21. Kiran, B., Kaushik, A., & Kaushik, C. P. (2008). Metal–salt co-tolerance and metal removal by indigenous cyanobacterial strains. Process Biochemistry, 43(6), 598–604.CrossRefGoogle Scholar
  22. Kirillova, E. N., Andersson, A., Han, J., Lee, M., & Gustafsson, Ö. (2014). Sources and light absorption of water-soluble organic carbon aerosols in the outflow from northern China. Atmospheric Chemistry and Physics, 14(3), 1413–1422.CrossRefGoogle Scholar
  23. Latała, A., Stepnowski, P., Nędzi, M., & Mrozik, W. (2005). Marine toxicity assessment of imidazolium ionic liquids: Acute effects on the Baltic algae Oocystis submarina and Cyclotella meneghiniana. Aquatic Toxicology, 73(1), 91–98.Google Scholar
  24. Mandal, S. K., & Joshi, H. V. (2005). Impact of ship-breaking activities on the coastal seawater at Alang. Gulf of Cambay, Gujarat (India): Pollution in Urban Industrial Environment. 149.Google Scholar
  25. Metting, F. B., Jr. (1996). Biodiversity and application of microalgae. Journal of Industrial Microbiology, 17(5–6), 477–489.CrossRefGoogle Scholar
  26. Mishra, S. K., Shrivastav, A., Maurya, R. R., Patidar, S. K., Haldar, S., & Mishra, S. (2012). Effect of light quality on the C-phycoerythrin production in marine cyanobacteria Pseudanabaena sp. isolated from Gujarat coast, India. Protein Expression and Purification, 81(1), 5–10.CrossRefGoogle Scholar
  27. Mur, R., Skulberg, O. M., & Utkilen, H. (1999). Cyanobacteria in the environment. http://cdrwww.who.int/entity/water_sanitation_health/resourcesquality/toxcyanchap2.pdf.
  28. Oren, A. (2014). Cyanobacteria: biology, ecology and evolution. Cyanobacteria: an economic perspective, 1-20.Google Scholar
  29. Paerl, H. (2008). Nutrient and other environmental controls of harmful cyanobacterial blooms along the freshwater–marine continuum (In cyanobacterial harmful algal blooms: state of the science and research needs, pp. 217–237). New York: Springer.Google Scholar
  30. Parikh, A., Shah, V., & Madamwar, D. (2006a). Cyanobacterial flora from polluted industrial effluents. Environmental Monitoring and Assessment, 116(1–3), 91–102.CrossRefGoogle Scholar
  31. Parikh, A., Shah, V., & Madamwar, D. (2006b). Cyanobacterial flora from polluted marine shores. Environmental Monitoring and Assessment, 120(1–3), 407–414.CrossRefGoogle Scholar
  32. Patrick, R. (1978). Effects of Trace Metals in the Aquatic Ecosystem: The diatom community, base of the aquatic food chain, undergoes significant changes in the presence of trace metals and other alterations in water chemistry. American Scientist, 185–191.Google Scholar
  33. Pinckney, J. B. M. B., Paerl, H. W., & Bebout, B. M. (1995). Salinity control of benthic microbial mat community production in a Bahamian hypersaline lagoon. Journal of experimental marine biology and ecology, 187(2), 223–237.Google Scholar
  34. Pinilla, G. A. (2006). Vertical distribution of phytoplankton in a clear water lake of Colombian Amazon (Lake Boa, Middle Caquetá). Hydrobiologia, 568(1), 79–90.Google Scholar
  35. Rai, S., Pandey, S., Shrivastava, A. K., Singh, P. K., Agrawal, C., & Rai, L. C. (2013). 4 Understanding the Mechanisms of Abiotic Stress Management in Cyanobacteria with Special Reference to Proteomics. Stress Biology of Cyanobacteria: Molecular Mechanisms to Cellular Responses, 93.Google Scholar
  36. Ramakrishnan, B., Megharaj, M., Venkateswarlu, K., Naidu, R., & Sethunathan, N. (2010). The impacts of environmental pollutants on microalgae and cyanobacteria. Critical Reviews in Environmental Science and Technology, 40(8), 699–821.CrossRefGoogle Scholar
  37. Rathi, A. K. A. (2003). Promotion of cleaner production for industrial pollution abatement in Gujarat (India). Journal of Cleaner Production, 11(5), 583–590.CrossRefGoogle Scholar
  38. Rijstenbil, J. W., Derksen, J. W. M., Gerringa, L. J. A., Poortvliet, T. C. W., Sandee, A., Van den Berg, M., Drie, J. V., & Wijnholds, J. A. (1994). Oxidative stress induced by copper: defense and damage in the marine planktonic diatom Ditylum brightwellii, grown in continuous cultures with high and low zinc levels. Marine Biology, 119(4), 583–590.Google Scholar
  39. Rippka, R. (1988). Isolation and purification of cyanobacteria. Methods in enzymology, 167, 3.Google Scholar
  40. Rochelle-Newall, E. J., & Fisher, T. R. (2002). Production of chromophoric dissolved organic matter fluorescence in marine and estuarine environments: an investigation into the role of phytoplankton. Marine Chemistry, 77(1), 7–21.CrossRefGoogle Scholar
  41. Salve, P. R., Lohkare, H., Gobre, T., Bodhe, G., Krupadam, R. J., Ramteke, D. S., & Wate, S. R. (2012). Characterization of chromophoric dissolved organic matter (CDOM) in rainwater using fluorescence spectrophotometry. Bulletin of Environmental Contamination and Toxicology, 88(2), 215–218.CrossRefGoogle Scholar
  42. Sayre, R. (2010). Microalgae: the potential for carbon capture. Bioscience, 60(9), 722–727.CrossRefGoogle Scholar
  43. Schwarzenbach, R. P., Escher, B. I., Fenner, K., Hofstetter, T. B., Johnson, C. A., Von Gunten, U., & Wehrli, B. (2006). The challenge of micropollutants in aquatic systems. Science, 313(5790), 1072–1077.CrossRefGoogle Scholar
  44. See, J. H., Campbell, L., Richardson, T. L., Pinckney, J. L., Shen, R., & Guinasso, N. L. (2005). Combining new technologies for determination of phytoplankton community structure in the northern Gulf of Mexico. Journal of Phycology, 41(2), 305–310.CrossRefGoogle Scholar
  45. Shehata, S. A., Lasheen, M. R., Ali, G. H., & Kobbia, I. A. (1999). Toxic effect of certain metals mixture on some physiological and morphological characteristics of freshwater algae. Water, Air, and Soil Pollution, 110(1–2), 119–135.CrossRefGoogle Scholar
  46. Smith, V. H. (2003). Eutrophication of freshwater and coastal marine ecosystems a global problem. Environmental Science and Pollution Research, 10(2), 126–139.CrossRefGoogle Scholar
  47. Subashchandrabose, S. R., Ramakrishnan, B., Megharaj, M., Venkateswarlu, K., & Naidu, R. (2013). Mixotrophic cyanobacteria and microalgae as distinctive biological agents for organic pollutant degradation. Environment International, 51, 59–72.CrossRefGoogle Scholar
  48. Tiwari, S. P., & Shanmugam, P. (2012). An optical model for the remote-sensing of absorption coefficients of phytoplankton in oceanic/coastal waters. Advances in Remote Sensing, 1, 19.CrossRefGoogle Scholar
  49. Twardowski, M. S., & Donaghay, P. L. (2001). Separating in situ and terrigenous sources of absorption by dissolved materials in coastal waters. Journal of Geophysical Research, Oceans, 106(C2), 2545–2560 (1978–2012).CrossRefGoogle Scholar
  50. Vicente-Martorell, J. J., Galindo-Riaño, M. D., García-Vargas, M., & Granado-Castro, M. D. (2009). Bioavailability of heavy metals monitoring water, sediments and fish species from a polluted estuary. Journal of Hazardous Materials, 162(2), 823–836.CrossRefGoogle Scholar
  51. Wang, X., & Zang, S. (2014). Distribution characteristics and ecological risk assessment of toxic heavy metals and metalloid in surface water of lakes in Daqing Heilongjiang Province, China. Ecotoxicology, 23(4), 609–617.Google Scholar
  52. Zhou, Q., Zhang, J., Fu, J., Shi, J., & Jiang, G. (2008). Biomonitoring: an appealing tool for assessment of metal pollution in the aquatic ecosystem. Analytica Chimica Acta, 606(2), 135–150.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Shailesh Kumar Patidar
    • 1
  • Kaumeel Chokshi
    • 1
    • 2
  • Basil George
    • 1
  • Sourish Bhattacharya
    • 2
    • 3
  • Sandhya Mishra
    • 1
    • 2
  1. 1.Salt and Marine Chemicals DisciplineCSIR-Central Salt and Marine Chemicals Research InstituteBhavnagarIndia
  2. 2.Academy of Scientific & Innovative Research (AcSIR)CSIR-Central Salt and Marine Chemicals Research InstituteBhavnagarIndia
  3. 3.Scale up and Process Engineering UnitCSIR-Central Salt and Marine Chemicals Research InstituteBhavnagarIndia

Personalised recommendations