Detection of hotspots and rapid determination of methane emissions from landfills via a ground-surface method

  • R. Gonzalez-Valencia
  • F. Magana-Rodriguez
  • E. Maldonado
  • J. Salinas
  • F. Thalasso


We present a method for the rapid determination of methane emissions from landfills based on atmospheric dispersion theory, which suggests that the methane concentration, at a small distance from the soil/atmosphere interface, is proportional to its flux. Thus, after suitable calibration, the determination of methane concentrations close to the ground allows for flux determination in a shorter time than with standard enclosure techniques. This concept was tested using a surface probe in direct contact with the ground. The probe extracts a continuous sample of the air at the probe/ground interface and transports it to a portable methane analyzer. It was observed that stable methane concentrations were measured 30 s after the probe was positioned at the measurement point. These concentrations correlated well with the fluxes measured by standard static chambers. The method was used to determine the fluxes at 217 points within a 90,000 m2 landfill. These measurements facilitated mapping of the CH4 emissions and the localization of hotspots. We conclude that the method is simple, effective, and relatively quick, compared to existing standard methods.


Solid waste landfill Methane flux measurement Hotspots Mapping Methane emissions Greenhouse gases 



This work was financially supported by the “Mexican National Council of Science and Technology (CONACYT)” through project grant No. 23661. Rodrigo Gonzalez-Valencia and Felipe Magana-Rodriguez received grant-aided support from CONACYT (scholarship numbers 266244 and 419562). The authors are thankful to Gustavo Varela, Mario Maldonado, German Salinas, and Carlos Quiroga from “Soluciones para el Control de Recursos (SCR),” for the technical assistance during the sampling campaigns. The authors are thankful to Victoria T. Velazquez Martinez, Juan Corona, Joel Alba, and David E. Flores-Rojas for their technical support.

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Abichou, T., Powelson, D., Chanton, J., Escoriaza, S., & Stern, J. (2006). Characterization of methane flux and oxidation at a solid waste landfill. Journal of Environmental Engineering, ASCE, 132(2), 220–228. doi: 10.1061/(asce)0733-9372(2006)132:2(220).CrossRefGoogle Scholar
  2. Abichou, T., Clark, J., & Chanton, J. (2011). Reporting central tendencies of chamber measured surface emission and oxidation. Waste Management, 31(5), 1002–1008. doi: 10.1016/j.wasman.2010.09.014.CrossRefGoogle Scholar
  3. Babilotte, A., Lagier, T., Fiani, E., & Taramini, V. (2010). Fugitive methane emissions from landfills: field comparison of five methods on a French landfill. Journal of Environmental Engineering, ASCE, 136(8), 777–784. doi: 10.1061/(asce)ee.1943-7870.0000260.CrossRefGoogle Scholar
  4. Bogner, J., & Spokas, K. (1993). Landfill CH4: rates, fates, and role in global carbon cycle. Chemosphere, 26(1–4), 369–386. doi: 10.1016/0045-6535(93)90432-5.CrossRefGoogle Scholar
  5. Bogner, J., Meadows, M., & Czepiel, P. (1997). Fluxes of methane between landfills and the atmosphere: natural and engineered controls. Soil Use and Management, 13(4), 268–277. doi: 10.1111/j.1475-2743.1997.tb00598.x.CrossRefGoogle Scholar
  6. Bogner, J., Pipatti, R., Hashimoto, S., Diaz, C., Mareckova, K., Diaz, L., et al. (2008). Mitigation of global greenhouse gas emissions from waste: conclusions and strategies from the Intergovernmental Panel on Climate Change (IPCC) fourth assessment report. Working Group III (mitigation). Waste Management & Research, 26(1), 11–32. doi: 10.1177/0734242x07088433.CrossRefGoogle Scholar
  7. Borjesson, G., Danielsson, A., & Svensson, B. H. (2000). Methane fluxes from a Swedish landfill determined by geostatistical treatment of static chamber measurements. Environmental Science & Technology, 34(18), 4044–4050. doi: 10.1021/es991350s.CrossRefGoogle Scholar
  8. Capaccioni, B., Caramiello, C., Tatano, F., & Viscione, A. (2011). Effects of a temporary HDPE cover on landfill gas emissions: multiyear evaluation with the static chamber approach at an Italian landfill. Waste Management, 31(5), 956–965. doi: 10.1016/j.wasman.2010.10.004.CrossRefGoogle Scholar
  9. Couth, R., & Trois, C. (2010). Carbon emissions reduction strategies in Africa from improved waste management: a review. Waste Management, 30(11), 2336–2346. doi: 10.1016/j.wasman.2010.04.013.CrossRefGoogle Scholar
  10. Czepiel, P. M., Mosher, B., Harriss, R. C., Shorter, J. H., McManus, J. B., Kolb, C. E., et al. (1996). Landfill methane emissions measured by enclosure and atmospheric tracer methods. Journal of Geophysical Research-Atmospheres, 101(D11), 16711–16719. doi: 10.1029/96jd00864.CrossRefGoogle Scholar
  11. Dalal, R. C., Allen, D. E., Livesley, S. J., & Richards, G. (2008). Magnitude and biophysical regulators of methane emission and consumption in the Australian agricultural, forest, and submerged landscapes: a review. Plant and Soil, 309(1–2), 43–76. doi: 10.1007/s11104-007-9446-7.CrossRefGoogle Scholar
  12. EA. (2010). Guidance on monitoring landfill gas surface emissions. United Kingdom: Environment Agency.Google Scholar
  13. Fung, I., John, J., Lerner, J., Matthews, E., Prather, M., Steele, L. P., et al. (1991). 3-dimensional model synthesis of the global methane cycle. Journal of Geophysical Research-Atmospheres, 96(D7), 13033–13065.CrossRefGoogle Scholar
  14. Giani, L., Bredenkamp, J., & Eden, I. (2002). Temporal and spatial variability of the CH4 dynamics of landfill cover soils. Journal of Plant Nutrition and Soil Science-Zeitschrift Fur Pflanzenernahrung Und Bodenkunde, 165(2), 205–210. doi: 10.1002/1522-2624(200204)165:2<205::aid-jpln205>;2-t.CrossRefGoogle Scholar
  15. Holmes, N. S., & Morawska, L. (2006). A review of dispersion modelling and its application to the dispersion of particles: an overview of different dispersion models available. Atmospheric Environment, 40(30), 5902–5928.CrossRefGoogle Scholar
  16. Hutchinson, G. L., & Mosier, A. R. (1981). Improved soil cover method for field measurement of nitrous oxide fluxes. Soil Science Society of America Journal, 45(2), 311–316.CrossRefGoogle Scholar
  17. ISWA. (2009). Waste and climate change, ISWA White paper. International Solid Waste Association. Accessed 13 November 2013.
  18. Jones, H. A., & Nedwell, D. B. (1993). Methane emission and methane oxidation in land-fill cover soil. FEMS Microbiology Ecology, 102(3–4), 185–195. doi: 10.1111/j.1574-6968.1993.tb05809.x.CrossRefGoogle Scholar
  19. Jung, Y., Imhoff, P. T., Augenstein, D., & Yazdani, R. (2011). Mitigating methane emissions and air intrusion in heterogeneous landfills with a high permeability layer. Waste Management, 31(5), 1049–1058. doi: 10.1016/j.wasman.2010.08.025.CrossRefGoogle Scholar
  20. Lohila, A., Laurila, T., Tuovinen, J.-P., Aurela, M., Hatakka, J., Thum, T., et al. (2007). Micrometeorological measurements of methane and carbon dioxide fluxes at a municipal landfill. Environmental Science & Technology, 41(8), 2717–2722. doi: 10.1021/es061631h.CrossRefGoogle Scholar
  21. McBain, M. C., Warland, J. S., McBride, R. A., & Wagner-Riddle, C. (2005). Micrometeorological measurements of N2O and CH4 emissions from a municipal solid waste landfill. Waste Management & Research, 23(5), 409–419. doi: 10.1177/0734242x05057253.CrossRefGoogle Scholar
  22. McRae, G. J., Goodin, W. R., & Seinfeld, J. H. (1982). Numerical-solution of the atmospheric diffusion equation for chemically reacting flows. Journal of Computational Physics, 45(1), 1–42. doi: 10.1016/0021-9991(82)90101-2.CrossRefGoogle Scholar
  23. Mosher, B. W., Czepiel, P. M., Harriss, R. C., Shorter, J. H., Kolb, C. E., McManus, J. B., et al. (1999). Methane emissions at nine landfill sites in the northeastern United States. Environmental Science & Technology, 33(12), 2088–2094. doi: 10.1021/es981044z.CrossRefGoogle Scholar
  24. Pedersen, A. R. (2012). HMR: Flux estimation with static chamber data. R package version 0.3.1. Accessed 5 May 2013.
  25. R Core Team (2012). R: A language and environment for statistical computing. R Foundation for Statistical Computing. Accessed 5 February 2013.
  26. Rolston, D. E. (1986). Gas Flux. Methods of Soil Analysis: Part 1—Physical and Mineralogical Methods, sssabookseries (methodsofsoilan1), 1103–1119, doi: 10.2136/sssabookser5.1.2ed.c47.
  27. Scheutz, C., Kjeldsen, P., Bogner, J. E., De Visscher, A., Gebert, J., Hilger, H. A., et al. (2009). Microbial methane oxidation processes and technologies for mitigation of landfill gas emissions. Waste Management & Research, 27(5), 409–455. doi: 10.1177/0734242x09339325.CrossRefGoogle Scholar
  28. Schroth, M. H., Eugster, W., Gomez, K. E., Gonzalez-Gil, G., Niklaus, P. A., & Oester, P. (2012). Above- and below-ground methane fluxes and methanotrophic activity in a landfill-cover soil. Waste Management, 32(5), 879–889. doi: 10.1016/j.wasman.2011.11.303.CrossRefGoogle Scholar
  29. Sewerin (2012). User´s Manual EX-TEC HS 680 / 660 / 650 /610. New Jersey.Google Scholar
  30. Spokas, K., Graff, C., Morcet, M., & Aran, C. (2003). Implications of the spatial variability of landfill emission rates on geospatial analyses. Waste Management, 23(7), 599–607. doi: 10.1016/s0956-053x(03)00102-8.CrossRefGoogle Scholar
  31. Spokas, K., Bogner, J., Chanton, J. P., Morcet, M., Aran, C., Graff, C., et al. (2006). Methane mass balance at three landfill sites: what is the efficiency of capture by gas collection systems? Waste Management, 26(5), 516–525. doi: 10.1016/j.wasman.2005.07.021.CrossRefGoogle Scholar
  32. Themelis, N. J., & Ulloa, P. A. (2007). Methane generation in landfills. Renewable Energy, 32(7), 1243–1257. doi: 10.1016/j.renene.2006.04.020.CrossRefGoogle Scholar
  33. Tregoures, A., Beneito, A., Berne, P., Gonze, M. A., Sabroux, J. C., Savanne, D., et al. (1999). Comparison of seven methods for measuring methane flux at a municipal solid waste landfill site. Waste Management & Research, 17(6), 453–458. doi: 10.1034/j.1399-3070.1999.00065.x.CrossRefGoogle Scholar
  34. USEPA (2006). Global Anthropogenic Non-CO2 Greenhouse Gas Emissions: 1990–2020. Report. United States Environmental Protection Agency. EPA-430-R-06-003. Accessed 8 November 2013.
  35. USEPA (2006). Other Test Method 10 (OTM 10) - Optical Remote Sensing for Emission Characterization from Non-point Sources. Other Method. United States Environmental Protection Agency. Accessed 13 November 2013.
  36. Willmott, C. J., & Matsuura, K. (2006). On the use of dimensioned measures of error to evaluate the performance of spatial interpolators. International Journal of Geographical Information Science, 20(1), 89–102. doi: 10.1080/13658810500286976.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • R. Gonzalez-Valencia
    • 1
  • F. Magana-Rodriguez
    • 1
  • E. Maldonado
    • 2
  • J. Salinas
    • 2
  • F. Thalasso
    • 1
  1. 1.Departamento de Biotecnología y BioingenieríaCentro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalMexico DFMexico
  2. 2.Soluciones para el Control de Recursos S.A. de C.V.MonterreyMexico

Personalised recommendations