Environmental Monitoring and Assessment

, Volume 186, Issue 12, pp 8785–8792 | Cite as

The evaluation of the association constant between R-SN and Hg2+



The effective determination of heavy metals from environmental media is among the most important issues for many industrialized countries. The interaction between RS-N, as novel heavy metal probe, and metal ions was studied. RS-N shows selective color change from colorless to pink in the presence of Hg2+ in methanol/water solvent and the UV–Vis study shows peak at 560 nm. Fluorescence data revealed that the fluorescence enhance of RS-N by Hg2+ dramatically was the result of the formation of [Hg2+]RS-N complex. The effective association constants (K a ) were 3.97 × 105 and 0.204 × 105 M−1 for Hg2+ and Cu2+ to RS-N, respectively. The thermodynamic parameters, enthalpy change (ΔH 0) and entropy change (ΔS 0), were calculated to be −6.431 ± 0.226 kJ/mol and −0.129 ± 0.008 J/K/mol, respectively, according to van’t Hoff equation on the basis of Gibbs free energy (ΔG 0) ranged from −33.8326 to −28.5389 kJ/mol.


Mercury probe Association constant Fluorescent sensor Copper 



The authors acknowledged the financial support by the National Natural Science Foundation of China (no. 21205001) and the Anhui Provincial Natural Science Foundation (no. 1208085MB16).


  1. Beija, M., Afonso, C. A. M., & Martinho, J. M. G. (2009). Synthesis and applications of Rhodamine derivatives as fluorescent probes. Chemical Society Reviews, 38(8), 2410–2433.CrossRefGoogle Scholar
  2. Burger, J., Gochfeld, M., Jeitner, C., Burke, S., Stamm, T., Snigaroff, R., Snigaroff, D., Patrick, R., & Weston, J. (2007). Mercury levels and potential risk from subsistence foods from the Aleutians. Science of the Total Environment, 384(1–3), 93–105.CrossRefGoogle Scholar
  3. Butler, O. T., Cairns, W. R. L., Cook, J. M., & Davidson, C. M. (2013). Atomic spectrometry update environmental analysis. Journal of Analytical Atomic Spectrometry, 28(2), 117–216.CrossRefGoogle Scholar
  4. Ding, F., Zhao, G., Chen, S., Liu, F., Sun, Y., & Zhang, L. (2009). Chloramphenicol binding to human serum albumin: determination of binding constants and binding sites by steady-state fluorescence. Journal of Molecular Structure, 929(1–3), 159–166.CrossRefGoogle Scholar
  5. Gomes, M. T. S. R., Morgado, E. V., & Oliveira, J. A. B. P. (1999). Optimisation of a flow injection system with a piezoelectric quartz crystal detector for the determination of inorganic mercury. Analytical Letters, 32(14), 2715–2723.CrossRefGoogle Scholar
  6. Hepel, M., & Stobiecka, M. (2011). Comparative kinetic model of fluorescence enhancement in selective binding of monochlorobimane to glutathione. Journal of Photochemistry and Photobiology A, 225(1), 72–80.CrossRefGoogle Scholar
  7. Huang, J., Xu, Y., & Qian, X. (2009a). A rhodamine-based Hg2+ sensor with high selectivity and sensitivity in aqueous solution: a NS2-containing receptor. Journal of Organic Chemistry, 74(5), 2167–2170.CrossRefGoogle Scholar
  8. Huang, W., Zhou, P., Yan, W., He, C., Xiong, L., Li, F., & Duan, C. (2009b). A bright water-compatible sugar-rhodamine fluorescence sensor for selective detection of Hg2+ in natural water and living cells. Journal of Environmental Monitoring, 11(2), 330–335. 111.CrossRefGoogle Scholar
  9. Huang, W., Song, C., He, C., Lv, G., Hu, X., Zhu, X., & Duan, C. (2009c). Recognition preference of rhodamine-thiospirolactams for mercury(II) in aqueous solution. Inorganic Chemistry, 48(12), 5061–5072.CrossRefGoogle Scholar
  10. Jana, A., Kim, J. S., Jung, H. S., & Bharadwaj, P. K. (2009). A cryptand based chemodosimetric probe for naked-eye detection of mercury(II) ion in aqueous medium and its application in live cell imaging. Chemical Communications, 29, 4417–4419.CrossRefGoogle Scholar
  11. Jiang, L., Wang, L., Zhang, B., Yin, G., & Wang, R. Y. (2010). Cell compatible fluorescent chemosensor for Hg2+ with high sensitivity and selectivity based on the Rhodamine fluorophore. European Journal of Inorganic Chemistry, 28, 4438–4443.CrossRefGoogle Scholar
  12. Kim, S. K., Swamy, K. M. K., Chung, S. Y., Kim, H. N., Kim, M. J., Jeong, Y., & Yoon, J. (2010). New fluorescent and colorimetric chemosensors based on the rhodamine and boronic acid groups for the detection of Hg2+. Tetrahedron Letters, 51(25), 3286–3289.CrossRefGoogle Scholar
  13. Lee, M. H., Wu, J. S., Lee, J. W., Jung, J. H., & Kim, J. S. (2007). Highly sensitive and selective chemosensor for Hg2+ based on the rhodamine fluorophore. Organic Letters, 9(13), 2501–2504.CrossRefGoogle Scholar
  14. Logar, M., Horvat, M., Akagi, H., Ando, T., Tomiyasu, T., & Fajon, V. (2011). Determination of total mercury and monomethylmercury compounds in water samples from Minamata Bay, Japan: an interlaboratory comparative study of different analytical techniques. Applied Organometallic Chemistry, 15(6), 515–526.CrossRefGoogle Scholar
  15. Lynam, M. M., Klaue, B., Keeler, G. J., & Blum, J. D. (2013). Using thermal analysis coupled to isotope dilution cold vapor ICP-MS in the quantification of atmospheric particulate phase mercury. Journal of Analytical Atomic Spectrometry, 28(11), 1788–1795.CrossRefGoogle Scholar
  16. Lyubchik, S. I., Lyubchik, A. I., Galushko, O. L., Tikhonova, L. P., Vital, J., Fonseca, I. M., & Lyubchik, S. B. (2004). Kinetics and thermodynamics of the Cr(III) adsorption on the activated carbon from co-mingled wastes. Colloids and Surfaces A, 242(1–3), 151–158.CrossRefGoogle Scholar
  17. Ma, Q. J., Zhang, X. B., Zhao, X. H., Jin, Z., Mao, G. J., Shen, G. L., & Yu, R. Q. (2010). A highly selective fluorescent probe for Hg2+ based on a rhodamine-coumarin conjugate. Analitica Chimica Acta, 663(1), 85–90.CrossRefGoogle Scholar
  18. Martín-Yerga, D., González-García, M. B., & Costa-García, A. (2013). Electrochemical determination of mercury: a review. Talanta, 116(15), 1091–1104.CrossRefGoogle Scholar
  19. Patra, M., Bhowmik, N., Bandopadhyay, B., & Sharma, A. (2004). Comparison of mercury, lead and arsenic with respect to genotoxic effects on plant systems and the development of genetic tolerance. Environmental and Experimental Botany, 52(3), 199–223.CrossRefGoogle Scholar
  20. Quang, D. T., & Kim, J. S. (2010). Fluoro- and chromogenic chemodosimeters for heavy metal ion detection in solution and biospecimens. Chemistry Review, 110(10), 6280–6301.CrossRefGoogle Scholar
  21. Quang, D. T., Wu, J. S., Luyen, N. D., Duong, T., Dan, N. D., Bao, N. C., & Quy, P. T. (2011). Rhodamine-derived Schiff base for the selective determination of mercuric ions in water media. Spectrochimica Acta A, 78(2), 753–756.CrossRefGoogle Scholar
  22. Satoh, H. (2000). Occupational and environmental toxicology of mercury and its compounds. Industrial Health, 38(2), 153–164.CrossRefGoogle Scholar
  23. Tang, L., Li, F., Liu, M., & Nandhakumar, R. (2011). Single sensor for two metal ions: colorimetric recognition of Cu2+ and fluorescent recognition of Hg2+. Spectrochimica Acta A, 78(3), 1168–1172.CrossRefGoogle Scholar
  24. Valeur, B., Pouget, J., Bourson, J., Kaschke, M., & Ernsting, N. P. (1992). Tuning of photoinduced energy transfer in a bichromophoric coumarin supermolecule by cation binding. Journal of Physical Chemistry, 96(16), 6545–6549.CrossRefGoogle Scholar
  25. Wang, H. H., Xue, L., Yu, C. L., Qian, Y. Y., & Jiang, H. (2011a). Rhodamine-based fluorescent sensor for mercury in buffer solution and living cells. Dyes and Pigments, 91(3), 50–355.Google Scholar
  26. Wang, H., Li, Y., Xu, S., Li, Y., Zhou, C., Fei, X., Sun, L., Zhang, C., Li, Y., Yang, Q., & Xu, X. (2011b). Rhodamine-based highly sensitive colorimetric off-on fluorescent chemosensor for Hg2+ in aqueous solution and for live cell imaging. Organic and Biomolecular Chemistry, 9(8), 2850–2855.CrossRefGoogle Scholar
  27. Wanichacheva, N., Setthakarn, K., Prapawattanapol, N., Hanmeng, O., Lee, V. S., & Grudpan, K. (2012). Rhodamine B-based turn-on fluorescent and colorimetric chemosensors for highly sensitive and selective detection of mercury(II) ions. Journal of Luminescence, 132(1), 35–40.CrossRefGoogle Scholar
  28. Wankasi, D., & Tarawou, T. (2008). Studies on the effect pH on the sorption of Pb(II) and Cu(II) ions from aqueous media by Nipa Palm. Journal of Applied Sciences and Environmental Management, 12(4), 87–94.Google Scholar
  29. Yang, H., Zhou, Z., Huang, K., Yu, M., Li, F., Yi, T., & Huang, C. (2007). Multisignaling optical-electrochemical sensor for Hg2+ based on a rhodamine derivative with a ferrocene unit. Organic Letters, 9(23), 4729–4732.CrossRefGoogle Scholar
  30. Yang, Y., Zhao, Q., Feng, W., & Li, F. (2013). Luminescent chemodosimeters for bioimaging. Chemistry Review, 113(1), 192–270.CrossRefGoogle Scholar
  31. Zhao, Y., Sun, Y., Lv, X., Liu, Y., Chen, M., & Guo, W. (2010). Rhodamine-based chemosensor for Hg2+ in aqueous solution with a broad pH range and its application in live cell imaging. Organic and Biomolecular Chemistry, 8(18), 4143–4147.CrossRefGoogle Scholar
  32. Zheng, H., Qian, Z. H., Xu, L., Yuan, F. F., Lan, L. D., & Xu, J. G. (2006). Switching the recognition preference of rhodamine B spirolactam by replacing one atom: design of rhodamine B thiohydrazide for recognition of Hg(II) in aqueous solution. Organic Letters, 8(5), 859–861.CrossRefGoogle Scholar
  33. Zhou, Y., You, X. Y., Fang, Y., Li, J. Y., Liu, K., & Yao, C. (2010). A thiophen-thiooxorhodamine conjugate fluorescent probe for detecting mercury in aqueous media and living cells. Organic and Biomolecular Chemistry, 8(21), 4819–4822.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.School of Environment and Energy EngineeringAnhui Jianzhu UniversityHefeiPeople’s Republic of China
  2. 2.School of Law and Political ScienceAnhui Jianzhu UniversityHefeiPeople’s Republic of China

Personalised recommendations