Advertisement

Environmental Monitoring and Assessment

, Volume 186, Issue 12, pp 8359–8380 | Cite as

Strategies to optimize monitoring schemes of recreational waters from Salta, Argentina: a multivariate approach

  • Dolores Gutiérrez-Cacciabue
  • Ingrid Teich
  • Hugo Ramiro Poma
  • Mercedes Cecilia Cruz
  • Mónica Balzarini
  • Verónica Beatriz Rajal
Article

Abstract

Several recreational surface waters in Salta, Argentina, were selected to assess their quality. Seventy percent of the measurements exceeded at least one of the limits established by international legislation becoming unsuitable for their use. To interpret results of complex data, multivariate techniques were applied. Arenales River, due to the variability observed in the data, was divided in two: upstream and downstream representing low and high pollution sites, respectively, and cluster analysis supported that differentiation. Arenales River downstream and Campo Alegre Reservoir were the most different environments, and Vaqueros and La Caldera rivers were the most similar. Canonical correlation analysis allowed exploration of correlations between physicochemical and microbiological variables except in both parts of Arenales River, and principal component analysis allowed finding relationships among the nine measured variables in all aquatic environments. Variable’s loadings showed that Arenales River downstream was impacted by industrial and domestic activities, Arenales River upstream was affected by agricultural activities, Campo Alegre Reservoir was disturbed by anthropogenic and ecological effects, and La Caldera and Vaqueros rivers were influenced by recreational activities. Discriminant analysis allowed identification of subgroup of variables responsible for seasonal and spatial variations. Enterococcus, dissolved oxygen, conductivity, E. coli, pH, and fecal coliforms are sufficient to spatially describe the quality of the aquatic environments. Regarding seasonal variations, dissolved oxygen, conductivity, fecal coliforms, and pH can be used to describe water quality during dry season, while dissolved oxygen, conductivity, total coliforms, E. coli, and Enterococcus during wet season. Thus, the use of multivariate techniques allowed optimizing monitoring tasks and minimizing costs involved.

Keywords

Bacterial indicators Recreational uses Seasonal behavior Statistical analysis Surface water 

Notes

Acknowledgments

This research was supported by NIH Grant # D43 TW005718 funded by the Fogarty International Center from the University of California at Davis and the National Institute of Environmental Health Sciences. Dolores Gutiérrez-Cacciabue, Ingrid Teich, Hugo Ramiro Poma, and Mercedes Cecilia Cruz are or were recipients of graduate fellowships from the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). The authors would like to thank Dr. Jerold Last for his kind help with the English corrections and Neli Romano Armada for helping with graphic design.

Supplementary material

10661_2014_4010_MOESM1_ESM.doc (102 kb)
Table S1 (DOC 102 kb)

References

  1. Agbaire, P.O., Obi, C.G. (2009). Seasonal variation of some physico-chemical properties of River Ethiope water in Abraka, Nigeria. Journal of Applied Sciences and Environmental Management, 13(1), 55–57. Full-text available online at www.bioline.org.br/ja.
  2. Aramayo, C. F., Gil, J. F., Cruz, M. C., Poma, H. R., Last, M. S., & Rajal, V. B. (2009). Diarrhea and parasitosis in Salta, Argentina. Journal of Infection in Developing Countries, 3(2), 105–111.Google Scholar
  3. Ashbolt, N. J., Grabow, W. O. K., & Snozzi, M. (2001). Indicators of microbial water quality. In L. Fewtrell & J. Bartram (Eds.), Guidelines, standards and health: assessment of risk and risk management for water-related infectious disease (pp. 289–316). London: WHO, World Health Organization. IWA Publishing.Google Scholar
  4. Balzarini, M. G., Gonzalez, L., Tablada, M., Casanoves, F., Di Rienzo, J. A., & Robledo, C. W. (2008). Manual del usuario (Infostat user manual). Córdoba: Editorial Brujas.Google Scholar
  5. Baudino, G. (1997). Hydrogeology in the Valley of Lerma, Province of Salta, Argentina. PhD Thesis, Universidad Nacional de Salta. Argentina (University of Salta, Argentina). www.unsa.edu.ar/natura/Gbaudino. Accessed 20 June 2013.
  6. Berenzen, N., Schulz, R., & Liess, M. (2001). Effects of chronic ammonium and nitrite contamination on the macroinvertebrate community in running water microcosms. Water Research, 35(14), 3478–3482.CrossRefGoogle Scholar
  7. Boutilier, L., Jamieson, R., Gordon, R., Lake, C., & Hart, W. (2009). Adsorption, sedimentation, and inactivation of E. coli within wastewater treatment wetlands. Water Research, 43(17), 4370–4380.CrossRefGoogle Scholar
  8. Brookes, J. D., Antenucci, J., Hipsey, M., Burch, M. D., Ashbolt, N. J., & Ferguson, C. (2004). Fate and transport of pathogens in lakes and reservoirs. Environment International, 30(5), 741–759.CrossRefGoogle Scholar
  9. CDC (2008). Surveillance for waterborne disease and outbreaks associated with recreational water use and other aquatic facility-associated health events—United States, 2005–2006 and surveillance for waterborne disease and outbreaks associated with drinking water and water not intended for drinking. United States, 2005–2006. MMWR CDC 57SS-9:1–70. Online: http://www.cdc.gov/mmwr/pdf/ss/ss5709.pdf. Accessed 15 March 2013.
  10. Chandran, A., Varghese, S., Kandeler, E., Thomas, A., Hatha, M., & Mazumde, A. (2011). An assessment of potential public health risk associate with the extended survival of indicator and pathogenic bacteria in freshwater lake sediments. International Journal of Hygiene and Environmental Health, 214(3), 258–264.CrossRefGoogle Scholar
  11. Chapman, D. (1996). Water quality assessments: a guide to the use of biota, sediments and water in environmental monitoring, 2nd ed. ISBN 0-419-21600-6 World Health Organization (WHO).Google Scholar
  12. Coronel-Olivares, C., Reyes-Gómez, L. M., Hernández-Muñoz, A., Martínez-Falcón, A. P., Vázquez-Rodríguez, G. A., & Iturbe, U. (2011). Chlorine disinfection of Pseudomonas aeruginosa, total coliforms, Escherichia coli and Enterococcus faecalis: revisiting reclaimed water regulations. Water Science and Technology, 64(11), 2151–2157.CrossRefGoogle Scholar
  13. Craun, G. F., Calderonm, R. L., & Craun, M. F. (2005). Outbreaks associated with recreational water in the United States. International Journal of Environmental Health Research, 15(4), 243–262.CrossRefGoogle Scholar
  14. Cruz, M. C., Gutiérrez Cacciabue, D., Gil, J. F., Gamboni, O., Vicente, M. S., Gonzo, E. E., Wuertz, S., & Rajal, V. B. (2012). Impact of point source pollution on shallow groundwater used for human consumption in a threshold country. Journal of Environmental Monitoring, 14(9), 2338–2349.CrossRefGoogle Scholar
  15. David, A., Tournoud, M. G., Perrin, J. L., Rosain, D., Rodier, C., Salles, C., Bancon-Montigny, C., & Picot, B. (2013). Spatial and temporal trends in water quality in a Mediterranean temporary river impacted by sewage effluents. Environmental Monitoring and Assessment, 185(3), 2517–2534.CrossRefGoogle Scholar
  16. Di Rienzo, J.A., Casanoves, F., Balzarini, M.G., Gonzalo, Z.L., Tablada, M., Robledo, C.W. (2011). InfoStat group, FCA, Universidad Nacional de Córdoba, Argentina. URL http://www.infostat.com.ar. Infostat Version 2011. Accessed 20 November 2013.
  17. Eaton, A. D., Clesceri, L. S., Rice, E. W., & Greenberg, A. E. (2005). Standard methods for the examination of water and wastewater (21st ed.). Washington, DC: American Public Health Association.Google Scholar
  18. EC. Council-Directive (1975). Concerning the quality required of surface water intended for the abstraction of drinking water in the Member States-75/440/EEC (OJ No L 194, 25. 7, p. 26.). www.nomosphysis.org.gr/attachments/39/75-440.pdf. Accessed 12 October 2012.
  19. EPA, Environmental Protection Agency (2002a). Method 1603: Escherichia coli (E. coli) in water by membrane filtration using modified membrane-thermotolerant Escherichia coli agar (modified mTEC). EPA-82 1-R-02-020.Google Scholar
  20. EPA, Environmental Protection Agency (2002b) Method 1106.1: enterococci in water by membrane filtration using membrane-Enterococcus-esculin iron agar (mE-EIA). EPA 600-4-85-076.Google Scholar
  21. Farmaki, E. G., Nikolaos, S., Thomaidis, V. S., & Constantinos, E. E. (2012). A comparative chemometric study for water quality expertise of the Athenian water reservoirs. Environmental Monitoring and Assessment, 184(12), 7635–7652.CrossRefGoogle Scholar
  22. Frieder, C. A., Nam, S. H., Martz, T. R., & Levin, L. A. (2012). High temporal and spatial variability of dissolved oxygen and pH in a nearshore California kelp forest. Biogeosciences, 9, 3917–3930.CrossRefGoogle Scholar
  23. Fulazzaky, M. A. (2012). Assessing the suitability of stream water for five different uses and its aquatic environment. Environmental Monitoring and Assessment, 185(1), 523–535.CrossRefGoogle Scholar
  24. Gao, G., Falconer, R. A., & Lin, B. (2011). Numerical modelling of sediment bacteria interaction processes in surface waters. Water Research, 45(5), 1951–1960.CrossRefGoogle Scholar
  25. Gatica, E. A., Almeida, C. A., Mallea, M. A., Del Corigliano, M. C., & González, P. (2012). Water quality assessment, by statistical analysis, on rural and urban areas of Chocancharava River (Río Cuarto), Córdoba, Argentina. Environmental Monitoring and Assessment, 184(12), 7257–7274.CrossRefGoogle Scholar
  26. Guida, M., Gallè, F., Mattei, M. L., Anastasi, D., & Liguori, G. (2009). Microbiological quality of the water of recreational and rehabilitation pools: a 2-year survey in Naples, Italy. Public Health, 123(6), 448–451.CrossRefGoogle Scholar
  27. He, L. M., & He, Z. L. (2008). Water quality prediction of marine recreational beaches receiving watershed baseflow and stormwater runoff in southern California, USA. Water Research, 42(10–11), 2563–2573.CrossRefGoogle Scholar
  28. Hong, H., Qiu, J., & Liang, Y. (2010). Environmental factors influencing the distribution of total and fecal coliform bacteria in six water storage reservoirs in the Pearl River Delta Region, China. Journal of Environmental Sciences (China), 22(5), 663–668.CrossRefGoogle Scholar
  29. HPA, Health Protection Agency. (2007). National Standard Method. Enumeration of Pseudomonas aeruginosa by membrane filtration.UK .Page 1 of 13-Reference No: W 6i3.Google Scholar
  30. INDEC, Instituto Nacional de Estadística y Censos, Argentina (2010). (National Institute of Statistics and Census, Argentina). Results from census 2010. http://www.censo2010.indec.gov.ar/. Accessed 10 June 2013.
  31. INTA, Experimental Station, Cerrillos Salta, 2011. http://anterior.inta.gov.ar/prorenoa/info/meteorologia.htm. Accessed 18 March 2013.
  32. Jamieson, R., Gordon, R., Joy, D., & Lee, H. (2004). Assessing microbial pollution of rural surface waters: a review of current watershed scale modeling approaches. Agricultural Water Management, 70(1), 1–17.CrossRefGoogle Scholar
  33. Jamieson, R. C., Joy, D. M., Lee, H., Kostaschuk, R., & Gordon, R. J. (2005). Resuspension of sediment-associated Escherichia coli in a natural stream. Journal of Environmental Quality, 34(2), 581–589.CrossRefGoogle Scholar
  34. Jiang, S. C. (2006). Human adenoviruses in water: occurrence and health implications: a critical review. Environmental Science & Technology, 40(23), 7132–7140.CrossRefGoogle Scholar
  35. Kaiser, H. F. (1959). The application of electronic computers to factor analysis. Symposium on the Application of Computers to Psychological Problems. Washington, D.C.: American Psychological Association.Google Scholar
  36. Laessing, R. E., & Duckett, E. J. (1979). Canonical correlation analysis: potential for environmental health planning. American Journal of Public Health, 69, 4.Google Scholar
  37. Lehmann, E. L. (1975). Non parametrics: statistical methods based on ranks. San Francisco: Holden-Day, Inc.Google Scholar
  38. Lipp, E. K., Kurz, R., Vincent, R., Rodriguez-Palacios, C., Farrah, S. R., & Rose, J. B. (2001). The effects of seasonal variability and weather on microbial fecal pollution and enteric pathogens in a subtropical estuary. Estuaries, 24(2), 266–276.CrossRefGoogle Scholar
  39. Mansilha, C. R., Coelho, C. A., Heitor, A. M., Amado, J., Martins, J. P., & Gameiro, P. (2009). Bathing waters: new directive, new standards, new quality approach. Marine Pollution Bulletin, 58(10), 1562–1565.CrossRefGoogle Scholar
  40. Marion, J. W., Lee, J., Lemeshow, S., & Buckley, T. J. (2010). Association of gastrointestinal illness and recreational water exposure at an inland U.S. beach. Water Research, 44(16), 4796–4804.CrossRefGoogle Scholar
  41. Marshall, K. C. (1980). Adsorption of microorganisms to soils and sediments. In G. Bitton & K. C. Marshall (Eds.), Adsorption of microorganisms to surfaces (pp. 317–330). New York: Wiley.Google Scholar
  42. MPCA, Minesota Pollution Control Agency (2009). Low dissolved oxygen in water causes, impact on aquatic life—an overview. Water Quality/Impaired Waters 3.24. www.pca.state.mn.us. Accessed 3 June 2013.
  43. Noori, R., Sabahi, M. S., Karbassi, A. R., Baghvand, A., & Taati Zadeh, H. (2010). Multivariate statistical analysis of surface water quality based on correlations and variations in the data set. Desalination, 260(1–3), 129–136.CrossRefGoogle Scholar
  44. Noori, R., Karbassi, A., Khakpour, A., Shahbazbegian, M., Badam, H. M. K., & Vesali-Naseh, M. (2012). Chemometric analysis of surface water quality data: case study of the Gorganrud River Basin, Iran. Environmental Modeling and Assessment, 17, 411–420.CrossRefGoogle Scholar
  45. Ouyang, Y., Nkedi-Kizza, P., Wu, Q. T., Shinde, D., & Huang, C. H. (2006). Assessment of seasonal variations in surface water quality. Water Research, 40(20), 3800–3810.CrossRefGoogle Scholar
  46. Palomino de Dios, A., Cabrera Salvat, M., Martinez Garrido, E., & Sanchez-Cabeza, J. A. (2011). Environmental quality of Sitges (Catalonia, NE Spain) beaches during the bathing season. Ocean and Coastal Management, 55, 128–134.CrossRefGoogle Scholar
  47. Papadopoulou, C., Economou, V., Sakkas, H., Gousia, P., Giannakopoulos, X., Dontorou, C., Filioussis, G., Gessouli, H., Karanis, P., & Leveidiotou, S. (2008). Microbiological quality of indoor and outdoor swimming pools in Greece: investigation of the antibiotic resistance of the bacterial isolates. International Journal of Hygiene and Environmental Health, 211(3–4), 385–397.CrossRefGoogle Scholar
  48. Pesce, S. F., & Wunderlin, D. A. (2000). Use of water quality indices to verify the impact of Cordoba City (Argentina) on Suquia River. Water Research, 34, 2915–2926.CrossRefGoogle Scholar
  49. PIDUA, Plan Integral de Desarrollo Urbano Ambiental de Salta (2009). Vol II: Appendix. Municipalidad de la Ciudad de Salta. Secretaría de Obras Públicas y Medio Ambiente. Dirección General de Planeamiento y Desarrollo Urbano. Salta. http://www.municipalidad-salta.gov.ar/pdfs/2_TOMO_2_WEB.pdf. Accessed 12 September 2012.
  50. Poma, H. R., Gutiérrez Cacciabue, D., Garcé, B., Gonzo, E. E., & Rajal, V. B. (2012). Towards a rational strategy for monitoring microbiological quality of ambient waters. Science of the Total Environment, 433, 98–109.CrossRefGoogle Scholar
  51. Rajal, V. B., Cruz, C., & Last, J. A. (2010). Water quality issues and infant diarrhea in a South American province. Global Public Health, 5(4), 348–363.CrossRefGoogle Scholar
  52. Salusso, M.M. (2005). Evaluation of surface water resources in the Alta Cuenca of Juramento (Salta). PhD thesis. Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires. Online: www.digital.bl.fcen.uba.ar. Accessed 4 March 2014.
  53. Samsudin, M. S., Juahir, H., Zain, S. M., & Adnan, N. H. (2011). Surface river water quality interpretation using environmetric techniques: case study at Perlis River Basin, Malaysia. International Journal of Environmental Protection, 1(5), 1–8.Google Scholar
  54. Shin, J. Y., Artigas, F., Hobble, C., & Lee, Y. S. (2012). Assessment of anthropogenic influences on surface water quality in urban estuary, northern New Jersey: multivariate approach. Environmental Monitoring and Assessment, 185(3), 2777–2794.CrossRefGoogle Scholar
  55. Shrestha, F., & Kazama, S. (2007). Assessment of surface water quality using multivariate statistical techniques: a case study of the Fuji river basin, Japan. Environmental Modelling & Software, 22, 464–475.CrossRefGoogle Scholar
  56. Skraber, S., Gassilloud, B., & Gantzer, C. (2004). Comparison of coliforms and coliphages as tools for assessment of viral contamination in river water. Applied and Environmental Microbiology, 70(6), 3644–3649.CrossRefGoogle Scholar
  57. Sokal, R. R. (1986). Phenetic taxonomy: theory and methods. Annual Review of Ecology and Systematics, 17, 423–442.CrossRefGoogle Scholar
  58. SRHN, Subsecretaría de Recursos Hídricos de la Nación. (2003). Development of national guidelines for quality levels of ambient water for Escherichia coli/Enterococci. Argentina: Water Resources.Google Scholar
  59. USEPA. (1986). Ambient water quality criteria for bacteria. Office of Water, U.S. Environmental Protection Agency, Washington, D.C. EPA/440/5–84/002.Google Scholar
  60. Vega, M., Pardo, R., Barrado, E., & Deban, L. (1998). Assessment of seasonal and polluting effects on the quality of river water by exploratory data analysis. Water Research, 32(12), 3581–3592.CrossRefGoogle Scholar
  61. Wang, X. L., Lu, Y. L., Han, J. Y., He, G. Z., & Wang, T. Y. (2007). Identification of anthropogenic influences on water quality of rivers in Taihu watershed. Journal of Environmental Sciences (China), 19(4), 475–481.CrossRefGoogle Scholar
  62. WHO, World Health Organization. (2006). Guidelines for safe recreational water environments. Volume 2, Swimming pools and similar environments. ISBN 92 4 154680 8.Google Scholar
  63. Wiedenmann, A., Krüger, P., Dietz, K., López-Pila, J. M., Szewzyk, R., & Botzenhart, K. (2006). A randomized controlled trial assessing infectious disease risks from bathing in fresh recreational waters in relation to the concentration of Escherichia coli, intestinal Enterococci, Clostridium perfringens, and somatic coliphages. Environmental Health Perspectives, 114(2), 228–236.CrossRefGoogle Scholar
  64. Wu, J., Long, S. C., Das, D., & Dorner, S. M. (2011). Are microbial indicators and pathogens correlated? A statistical analysis of 40 years of research. Journal of Water and Health, 9(2), 265–278.CrossRefGoogle Scholar
  65. Wunderlin, D. A., Díaz, M. P., Amé, M. V., Pesce, S. F., Hued, A. C., & Bistoni, M. A. (2001). Pattern recognition techniques for the evaluation of spatial and temporal variations in water quality. A case of study: Suquía river basin (Córdoba-Argentina). Water Research, 35(12), 2881–2894.CrossRefGoogle Scholar
  66. Yates, M. (2007). Classical indicators in the 21st century—far and beyond the coliform. Water Environment Research, 79(3), 279–286.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Dolores Gutiérrez-Cacciabue
    • 1
  • Ingrid Teich
    • 2
  • Hugo Ramiro Poma
    • 1
  • Mercedes Cecilia Cruz
    • 1
  • Mónica Balzarini
    • 2
  • Verónica Beatriz Rajal
    • 1
  1. 1.Instituto de Investigaciones para la Industria Química—Consejo Nacional de Investigaciones Científicas y Técnicas (INIQUI—CONICET), Facultad de IngenieríaUniversidad Nacional de Salta (UNSa)SaltaArgentina
  2. 2.Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)—Estadística y Biometría, Facultad de Ciencias AgropecuariasUNCCórdobaArgentina

Personalised recommendations