Environmental Monitoring and Assessment

, Volume 186, Issue 10, pp 6169–6192 | Cite as

Predicting climate change effects on surface soil organic carbon of Louisiana, USA



This study aimed to assess the degree of potential temperature and precipitation change as predicted by the HadCM3 (Hadley Centre Coupled Model, version 3) climate model for Louisiana, and to investigate the effects of potential climate change on surface soil organic carbon (SOC) across Louisiana using the Rothamsted Carbon Model (RothC) and GIS techniques at the watershed scale. Climate data sets at a grid cell of 0.5° × 0.5° for the entire state of Louisiana were collected from the HadCM3 model output for three climate change scenarios: B2, A2, and A1F1, that represent low, higher, and even higher greenhouse gas emissions, respectively. Geo-referenced datasets including USDA-NRCS Soil Geographic Database (STATSGO), USGS Land Cover Dataset (NLCD), and the Louisiana watershed boundary data were gathered for SOC calculation at the watershed scale. A soil carbon turnover model, RothC, was used to simulate monthly changes in SOC from 2001 to 2100 under the projected temperature and precipitation changes. The simulated SOC changes in 253 watersheds from three time periods, 2001–2010, 2041–2050, and 2091–2100, were tested for the influence of the land covers and emissions scenarios using SAS PROC GLIMMIX and PDMIX800 macro to separate Tukey-Kramer (p < 0.01) adjusted means into letter comparisons. The study found that for most of the next 100 years in Louisiana, monthly mean temperature under all three emissions projections will increase; and monthly precipitation will, however, decrease. Under three emission scenarios, A1FI, A2, and B2, the mean SOC in the upper 30-cm depth of Louisiana forest soils will decrease from 33.0 t/ha in 2001 to 26.9, 28.4, and 29.2 t/ha in 2100, respectively; the mean SOC of Louisiana cropland soils will decrease from 44.4 t/ha in 2001 to 36.3, 38.4, and 39.6 t/ha in 2100, respectively; the mean SOC of Louisiana grassland soils will change from 30.7 t/ha in 2001 to 25.4, 26.6, and 27.0 t/ha in 2100, respectively. Annual SOC changes will be significantly different among the land cover classes including evergreen forest, mixed forest, deciduous forest, small grains, row crops, and pasture/hay (p < 0.0001), emissions scenarios (p < 0.0001), and their interactions (p < 0.0001).


Climate change Emissions scenarios Soil organic carbon RothC model Watersheds 



Special thanks go to the Center for Computation & Technology of the Louisiana State University for its support with the climate data computation. We would also like to thank Jo Smith and Pete Smith from University of Aberdeen, UK, for their invaluable advice during the RothC modeling. The Climate Research Unit (CRU) in the School of Environmental Sciences at the University of East Anglia, UK, provided climate data. This research was supported through a Louisiana Board of Regents grant, Contract No.: LEQSF (2004–2007)-RD-A-04.


  1. Al-Adamat, R., Rawajfih, Z., Easter, M., Paustian, K., Coleman, K., Milne, E., Falloon, P., Powlson, D. S., & Batjes, N. H. (2007). Predicted soil organic carbon stocks and changes in Jordan between 2000 and 2030 made using the GEFSOC modelling system. Agriculture, Ecosystems & Environment, 122, 35–45.CrossRefGoogle Scholar
  2. Bhattacharyya, T., Pal, D. K., Easter, M., Batjes, N. H., Milne, E., Gajbhiye, K. S., Chandran, P., Ray, S. K., Mandal, C., Paustian, K., Williams, S., Killian, K., Coleman, K., Falloon, P., & Powlson, D. S. (2007). Modelled soil organic carbon stocks and changes in the Indo-Gangetic Plains, India from 1980 to 2030. Agriculture, Ecosystems & Environment, 122, 84–94.CrossRefGoogle Scholar
  3. Cerri, C. E. P., Easter, M., Paustian, K., Killian, K., Coleman, K., Bernoux, M., Falloon, P., Powlson, D. S., Batjes, N. H., Milne, E., & Cerri, C. C. (2007). Predicted soil organic carbon stocks and changes in the Brazilian Amazon between 2000 and 2030. Agriculture, Ecosystems & Environment, 122, 58–72.CrossRefGoogle Scholar
  4. Coleman, K. & Jenkinson, D. (1999). RothC-26.3. A model for the turnover of carbon in soils. Model Description and Windows Users Guide. IACR – Rothamsted, Harpenden.Google Scholar
  5. Davidson, E. A., & Janssens, I. A. (2006). Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature, 440(7081), 165–173.CrossRefGoogle Scholar
  6. Easter, M., Paustian, K., Killian, K., Coleman, K., & Milne, E. (2007). Climate change and its impact on soil and vegetation carbon storage in Kenya, Jordan, India and Brazil. Agriculture Ecosystems & Environment, 122, 114–124.Google Scholar
  7. ESRI, (2012). ArcGIS 9.3 for Windows. WWW document, http://www.esri.com
  8. Falloon, P., Smith P., Coleman K., & Marshall S. (1998). Estimating the size of the inertorganic matter pool for use in the Rothamsted carbon model. Soil Biology and Biochemistry, 30, 1207–1211.Google Scholar
  9. Falloon, P., Jones, C. D., Cerri, C. E., Al-Adamat, R., Kamoni, P., Bhattacharyya, T., Easter, M., Paustian, K., Killian, K., Coleman, K., & Milne, E. (2007). Climate change and its impact on soil and vegetation carbon storage in Kenya, Jordan, India and Brazil. Agriculture, Ecosystems & Environment, 122, 114–124.CrossRefGoogle Scholar
  10. Franko, U. (1996). Modelling approaches of soil organic matter within the CANDY system. In D. S. Powlson, P. Smith, & J. U. Smith (Eds.), Evaluation of soil organic matter models using existing, long-term datasets, NATO ASI, I38 (pp. 247–254). Berlin: Springer.CrossRefGoogle Scholar
  11. Franko, U., Crocker, G. J., Grace, P. R., Klír, J., Körschens, M., Poulton, P. R., & Richter, D. D. (1997). Simulating trends in soil organic carbon in long-term experiments using the CANDY model. Geoderma, 81, 109–120.CrossRefGoogle Scholar
  12. Gordon, C., Cooper, C., Senior, C. A., Banks, H. T., Gregory, J. M., Johns, T. C., Mitchell, J. F. B., & Wood, R. A. (2000). The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Climate Dynamics, 16, 147–168.CrossRefGoogle Scholar
  13. Heimann, M., & Reichstein, M. (2008). Terrestrial ecosystem carbon dynamics and climate feedbacks. Nature, 451, 289–292.CrossRefGoogle Scholar
  14. Homer, C., Huang, C., Yang, L., Wylie, B., & Coan, M. (2004). Development of a 2001 national landcover database for the United States. Photogrammetric Engineering and Remote Sensing, 70(7), 829–840.CrossRefGoogle Scholar
  15. IPCC. (2001). Climate change 2001: the scientific basis. Cambridge University Press, Cambridge, UK. Available online http://www.grida.no/climate/ipcc_tar/
  16. Jenkinson, D. S. (1990). The turnover of organic carbon and nitrogen in soil. Philosophical Transactions of the Royal Society, London B, 329, 361–368.CrossRefGoogle Scholar
  17. Jenkinson, D. S., & Rayner, J. H. (1977). The turnover of soil organic matter in some of the Rothamsted classical experiments. Soil Science, 123, 298–305.Google Scholar
  18. Jenkinson, D. S., Adams, D. E., & Wild, A. (1991). Model estimates of CO2 emissions from soil in response to global warming. Nature, 351(6322), 304–306.CrossRefGoogle Scholar
  19. Jenkinson, D. S., & Coleman, K. (1994). Calculating the annual input of organic matter to soil from measurements of total organic carbon and radiocarbon. European Journal of Soil Science, 45, 167–174.CrossRefGoogle Scholar
  20. Jenkinson, D. S., Harkness, D. D., Vance, E. D., Adams, D. E., & Harrison, A. F. (1992). Calculating net primary production and annual input of organic matter to soil from the amount and radiocarbon content of soil organic matter. Soil Biology & Biochemistry, 24(4), 295–308.CrossRefGoogle Scholar
  21. Jenkinson, D. S., Hart, P. B. S., Rayner, J. H., & Parry, L. C. (1987). Modelling the turnover of organic matter in long-term experiments at Rothamsted. INTECOL Bulletin, 15, 1–8.Google Scholar
  22. Jenny, H. (1941). Factors of soil formation. New York: McGraw-Hill.Google Scholar
  23. Jenny, H. (1961). EW Hillgard and the birth of modern soil science. Berkeley, CA: Farallo Publ.Google Scholar
  24. Kamoni, P. T., Gicheru, P. T., Wokabi, S. M., Easter, M., Milne, E., Coleman, K., Falloon, P., & Paustian, K. (2007). Predicted soil organic carbon stocks and changes in Kenya between 1990 and 2030. Agriculture, Ecosystems & Environment, 122, 105–113.CrossRefGoogle Scholar
  25. Karl, T.R., Melillo, J.M., & Peterson, T.C. (2009). Global climate change impacts in the United States, (eds.). Cambridge University Press.Google Scholar
  26. Louisiana Department of Environmental Quality. (2004). Basin subsegments from LDEQ source data, geographic NAD83, LOSCO [basin_subsegments_LDEQ_2004]: Louisiana Department of Environmental Quality. LA: Baton Rouge.Google Scholar
  27. Manzoni, S., & Porporato, A. (2009). Soil carbon and nitrogen mineralization: theory and models across scales. Soil Biology & Biochemistry, 41, 1355–1379.CrossRefGoogle Scholar
  28. Mitchell, T.D., Carter, T.R., Jones, P.D., Hulme, M., & New, M. (2004). A comprehensive set of high-resolution grids of monthly climate for Europe and the globe: the observed record (1901–2000) and 16 scenarios (2001–2100). Tyndall Centre for Climate Change Research Working Paper 55, 25. http://www.tyndall. ac.uk/publications/working_papers/wp55.pdf
  29. Nakicenovic, N., Alcamo, J., Davis, G., de Vries, B., Fenhann, J., Gaffin, S., Gregory, K., Gru¨bler, A., Jung, T. Y., Kram, T., Emiliola Rovere, E., Michaelis, L., Mori, S., Morita, T., Pepper, W., Pitcher, H., Price, L., Riahi, K., Roehrl, A., Rogner, H.-H., Sankovski, A., Schlesinger, M. E., Shukla, P. R., Smith, S., Swart, R. J., van Rooyen, S., Victor, N., & Dadi, Z. (2000). Special report on emissions scenarios. Cambridge: Cambridge University Press.Google Scholar
  30. Nelson, D. W., & Sommers, L. E. (1982). Total carbon, organic carbon and organic matter. In: A. L. Page, R. H. Miller, and D. R. Keeney (Eds.), Methods of Soil Analysis (539–579). Wisconsin: American Society of Agronomy.Google Scholar
  31. New, M., Hulme, M., & Jones, P. (1999). Representing twentieth-century space-time climate variability. Part I: development of a 1961–90 mean monthly terrestrial climatology. Journal of Climate, 12, 829–856.CrossRefGoogle Scholar
  32. Parton, W. J., Schimel, D. S., Cole, C. V., & Ojima, D. S. (1987). Analysis of factors controlling soil organic matter levels in Great Plains grasslands. Soil Science Society of America Journal, 51, 1173–1179.Google Scholar
  33. Pope, V., Gallani, M. L., Rowntree, P. R., & Stratton, R. A. (2000). The impact of new physical parameterizations in the Hadley Centre climate model: HadAM3. Climate Dynamics, 16, 123–146.CrossRefGoogle Scholar
  34. Ruiz-Barradas, A., & Nigam, S. (2006). IPCC’s twentieth-century climate simulations: varied representations of north American hydroclimate variability. Journal of Climate, 19, 4041–4058.CrossRefGoogle Scholar
  35. SAS Institute. (2007). SAS User’s Guide, Release 9.1. Cary, NC: SAS Institute.Google Scholar
  36. Saxton, A. M. (1998). A macro for converting mean separation output to letter groupings in Proc Mixed. Pages 1243–1246 in Proc. 23rd SAS Users Group Int. Cary, NC, USA: SAS Inst. Inc.Google Scholar
  37. Schlesinger, W. H. (1997). Biogeochemistry: an analysis of global change. San Diego, California, USA: Academic.Google Scholar
  38. Sitch, S., Smith, B., Prentice, I. C., Arneth, A., Bondeau, A., Cramer, W., Kaplan, J. O., Levis, S., Lucht, W., Sykes, M. T., Thonicke, K., & Venevsky, S. (2003). Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Global Change Biology, 9, 161–185. doi: 10.1046/j.1365-2486.2003.00569.x.CrossRefGoogle Scholar
  39. Smith, J., Smith, P., Wattenbach, M., Gottschalk, P., Romanenkov, V. A., Shevtsova, L. K., Sirotenko, O. D., Rukhovich, D. I., Koroleva, P. V., Romanenko, I. A., & Lisovoi, N. V. (2007). Projected changes in the organic carbon stocks of cropland mineral soils of European Russia and the Ukraine, 1990–2070. Global Change Biology, 13, 342–356.CrossRefGoogle Scholar
  40. Smith, J., Smith, P., Wattenbach, M., Zaehle, S., Hiederer, R., Jones, R. J. A., Montanarella, L., Rounsevell, M. D. A., Reginster, I., & Ewert, F. (2005). Projected changes in mineral soil carbon of European croplands and grasslands, 1990–2080. Global Change Biology, 11, 2141–2152.CrossRefGoogle Scholar
  41. Smith, P., Smith, J., Wattenbach, M., Meyer, J., Lindner, M., Zaehle, S., Hiederer, R., Jones, R. J. A., Montanarella, L., Rounsevell, M., Reginster, I., & Kankaanpaa, S. (2006). Projected changes in mineral soil carbon of European forests, 1990–2100. Canadian Journal of Soil Science, 86, 159–169.CrossRefGoogle Scholar
  42. Smith, W. N., Grant, B. B., Desjardins, R. L., Qian, B., Hutchinson, J., & Gameda, S. (2009). Potential impact of climate change on carbon in agricultural soils in Canada 2000–2099. Climatic Change, 93, 319–333.CrossRefGoogle Scholar
  43. Trumbore, S. E., Chadwick, O. A., & Amundson, R. (1996). Rapid exchange between soil carbon and atmospheric carbon dioxide driven by temperature change. Science, 272, 393–396.CrossRefGoogle Scholar
  44. U.S. Environmental Protection Agency. (2009). America’s wetlands (http://www.epa.gov/OWOW/wetlands/vital/toc.html).
  45. Wang, F. G., & Xu, Y. J. (2011). Projecting climate change effects on forest net primary productivity in subtropical Louisiana, USA. Ambio, 40, 506–520.CrossRefGoogle Scholar
  46. White, A., Cannell, M. G. R., & Friend, A. D. (1999). Climate change impacts on ecosystems and the terrestrial carbon sink: a new assessment. Global Environmental Change-Human and Policy Dimensions, 9, S21–S30.CrossRefGoogle Scholar
  47. Wei, J. B., Xiao, D. N., Zhang, X. Y., Li, X. Z., & Li, X. Y. (2006). Spatial variability of soil organic carbon in relation to environmental factors of a typical small watershed in the Black Soil region, Northeast China. Environmental Monitoring and Assessment, 121, 595–611.Google Scholar
  48. Xu, Y.J., & Prisley, S. P. (2000). Linking STATSGO and FIA data for spatial analyses of land carbon densities. Proceedings CD ROM of the 3rd USDA Forest Service Southern GIS Conference. Athens, Georgia. Available on-line at http://www.soforgis.net/2000/cdrom/posters.html (verified on July 25, 2011).
  49. Zaehle, S., Bondeau, A., Carter, T. R., Cramer, W., Erhard, M., Prentice, I. C., Reginster, I., Rounsevell, M. D. A., Sitch, S., Smith, B., Smith, P. C., & Sykes, M. (2007). Projected changes in terrestrial carbon storage in Europe under climate and land-use change, 1990–2100. Ecosystems, 10, 380–401.CrossRefGoogle Scholar
  50. Zhong, B., & Xu, Y. J. (2009). Topographic effects on soil organic carbon in Louisiana watersheds. Environmental Management, 43, 662–672.CrossRefGoogle Scholar
  51. Zhong, B., & Xu, Y. J. (2011a). Scale effects of geographical soil datasets on soil carbon estimation in Louisiana, USA: a comparison of STATSGO and SSURGO. Pedosphere, 21(4), 491–501.CrossRefGoogle Scholar
  52. Zhong, B., & Xu, Y. J. (2011b). Risk of inundation to coastal wetlands and soil carbon accounting in Louisiana, USA. Environmental Science & Technology, 45(19), 8241–8246.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.JiangSu Key Laboratory of Public Project Audit, School of TechnologyNanjing Audit UniversityNanjingPeople’s Republic of China
  2. 2.School of Renewable Natural ResourcesLouisiana State University Agricultural CenterBaton RougeUSA

Personalised recommendations