Skip to main content

Advertisement

Log in

Predicting climate change effects on surface soil organic carbon of Louisiana, USA

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

This study aimed to assess the degree of potential temperature and precipitation change as predicted by the HadCM3 (Hadley Centre Coupled Model, version 3) climate model for Louisiana, and to investigate the effects of potential climate change on surface soil organic carbon (SOC) across Louisiana using the Rothamsted Carbon Model (RothC) and GIS techniques at the watershed scale. Climate data sets at a grid cell of 0.5° × 0.5° for the entire state of Louisiana were collected from the HadCM3 model output for three climate change scenarios: B2, A2, and A1F1, that represent low, higher, and even higher greenhouse gas emissions, respectively. Geo-referenced datasets including USDA-NRCS Soil Geographic Database (STATSGO), USGS Land Cover Dataset (NLCD), and the Louisiana watershed boundary data were gathered for SOC calculation at the watershed scale. A soil carbon turnover model, RothC, was used to simulate monthly changes in SOC from 2001 to 2100 under the projected temperature and precipitation changes. The simulated SOC changes in 253 watersheds from three time periods, 2001–2010, 2041–2050, and 2091–2100, were tested for the influence of the land covers and emissions scenarios using SAS PROC GLIMMIX and PDMIX800 macro to separate Tukey-Kramer (p < 0.01) adjusted means into letter comparisons. The study found that for most of the next 100 years in Louisiana, monthly mean temperature under all three emissions projections will increase; and monthly precipitation will, however, decrease. Under three emission scenarios, A1FI, A2, and B2, the mean SOC in the upper 30-cm depth of Louisiana forest soils will decrease from 33.0 t/ha in 2001 to 26.9, 28.4, and 29.2 t/ha in 2100, respectively; the mean SOC of Louisiana cropland soils will decrease from 44.4 t/ha in 2001 to 36.3, 38.4, and 39.6 t/ha in 2100, respectively; the mean SOC of Louisiana grassland soils will change from 30.7 t/ha in 2001 to 25.4, 26.6, and 27.0 t/ha in 2100, respectively. Annual SOC changes will be significantly different among the land cover classes including evergreen forest, mixed forest, deciduous forest, small grains, row crops, and pasture/hay (p < 0.0001), emissions scenarios (p < 0.0001), and their interactions (p < 0.0001).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Al-Adamat, R., Rawajfih, Z., Easter, M., Paustian, K., Coleman, K., Milne, E., Falloon, P., Powlson, D. S., & Batjes, N. H. (2007). Predicted soil organic carbon stocks and changes in Jordan between 2000 and 2030 made using the GEFSOC modelling system. Agriculture, Ecosystems & Environment, 122, 35–45.

    Article  CAS  Google Scholar 

  • Bhattacharyya, T., Pal, D. K., Easter, M., Batjes, N. H., Milne, E., Gajbhiye, K. S., Chandran, P., Ray, S. K., Mandal, C., Paustian, K., Williams, S., Killian, K., Coleman, K., Falloon, P., & Powlson, D. S. (2007). Modelled soil organic carbon stocks and changes in the Indo-Gangetic Plains, India from 1980 to 2030. Agriculture, Ecosystems & Environment, 122, 84–94.

    Article  CAS  Google Scholar 

  • Cerri, C. E. P., Easter, M., Paustian, K., Killian, K., Coleman, K., Bernoux, M., Falloon, P., Powlson, D. S., Batjes, N. H., Milne, E., & Cerri, C. C. (2007). Predicted soil organic carbon stocks and changes in the Brazilian Amazon between 2000 and 2030. Agriculture, Ecosystems & Environment, 122, 58–72.

    Article  CAS  Google Scholar 

  • Coleman, K. & Jenkinson, D. (1999). RothC-26.3. A model for the turnover of carbon in soils. Model Description and Windows Users Guide. IACR – Rothamsted, Harpenden.

  • Davidson, E. A., & Janssens, I. A. (2006). Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature, 440(7081), 165–173.

    Article  CAS  Google Scholar 

  • Easter, M., Paustian, K., Killian, K., Coleman, K., & Milne, E. (2007). Climate change and its impact on soil and vegetation carbon storage in Kenya, Jordan, India and Brazil. Agriculture Ecosystems & Environment, 122, 114–124.

  • ESRI, (2012). ArcGIS 9.3 for Windows. WWW document, http://www.esri.com

  • Falloon, P., Smith P., Coleman K., & Marshall S. (1998). Estimating the size of the inertorganic matter pool for use in the Rothamsted carbon model. Soil Biology and Biochemistry, 30, 1207–1211.

  • Falloon, P., Jones, C. D., Cerri, C. E., Al-Adamat, R., Kamoni, P., Bhattacharyya, T., Easter, M., Paustian, K., Killian, K., Coleman, K., & Milne, E. (2007). Climate change and its impact on soil and vegetation carbon storage in Kenya, Jordan, India and Brazil. Agriculture, Ecosystems & Environment, 122, 114–124.

    Article  CAS  Google Scholar 

  • Franko, U. (1996). Modelling approaches of soil organic matter within the CANDY system. In D. S. Powlson, P. Smith, & J. U. Smith (Eds.), Evaluation of soil organic matter models using existing, long-term datasets, NATO ASI, I38 (pp. 247–254). Berlin: Springer.

    Chapter  Google Scholar 

  • Franko, U., Crocker, G. J., Grace, P. R., Klír, J., Körschens, M., Poulton, P. R., & Richter, D. D. (1997). Simulating trends in soil organic carbon in long-term experiments using the CANDY model. Geoderma, 81, 109–120.

    Article  Google Scholar 

  • Gordon, C., Cooper, C., Senior, C. A., Banks, H. T., Gregory, J. M., Johns, T. C., Mitchell, J. F. B., & Wood, R. A. (2000). The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Climate Dynamics, 16, 147–168.

    Article  Google Scholar 

  • Heimann, M., & Reichstein, M. (2008). Terrestrial ecosystem carbon dynamics and climate feedbacks. Nature, 451, 289–292.

    Article  CAS  Google Scholar 

  • Homer, C., Huang, C., Yang, L., Wylie, B., & Coan, M. (2004). Development of a 2001 national landcover database for the United States. Photogrammetric Engineering and Remote Sensing, 70(7), 829–840.

    Article  Google Scholar 

  • IPCC. (2001). Climate change 2001: the scientific basis. Cambridge University Press, Cambridge, UK. Available online http://www.grida.no/climate/ipcc_tar/

  • Jenkinson, D. S. (1990). The turnover of organic carbon and nitrogen in soil. Philosophical Transactions of the Royal Society, London B, 329, 361–368.

    Article  CAS  Google Scholar 

  • Jenkinson, D. S., & Rayner, J. H. (1977). The turnover of soil organic matter in some of the Rothamsted classical experiments. Soil Science, 123, 298–305.

  • Jenkinson, D. S., Adams, D. E., & Wild, A. (1991). Model estimates of CO2 emissions from soil in response to global warming. Nature, 351(6322), 304–306.

    Article  CAS  Google Scholar 

  • Jenkinson, D. S., & Coleman, K. (1994). Calculating the annual input of organic matter to soil from measurements of total organic carbon and radiocarbon. European Journal of Soil Science, 45, 167–174.

    Article  Google Scholar 

  • Jenkinson, D. S., Harkness, D. D., Vance, E. D., Adams, D. E., & Harrison, A. F. (1992). Calculating net primary production and annual input of organic matter to soil from the amount and radiocarbon content of soil organic matter. Soil Biology & Biochemistry, 24(4), 295–308.

    Article  Google Scholar 

  • Jenkinson, D. S., Hart, P. B. S., Rayner, J. H., & Parry, L. C. (1987). Modelling the turnover of organic matter in long-term experiments at Rothamsted. INTECOL Bulletin, 15, 1–8.

    Google Scholar 

  • Jenny, H. (1941). Factors of soil formation. New York: McGraw-Hill.

    Google Scholar 

  • Jenny, H. (1961). EW Hillgard and the birth of modern soil science. Berkeley, CA: Farallo Publ.

    Google Scholar 

  • Kamoni, P. T., Gicheru, P. T., Wokabi, S. M., Easter, M., Milne, E., Coleman, K., Falloon, P., & Paustian, K. (2007). Predicted soil organic carbon stocks and changes in Kenya between 1990 and 2030. Agriculture, Ecosystems & Environment, 122, 105–113.

    Article  CAS  Google Scholar 

  • Karl, T.R., Melillo, J.M., & Peterson, T.C. (2009). Global climate change impacts in the United States, (eds.). Cambridge University Press.

  • Louisiana Department of Environmental Quality. (2004). Basin subsegments from LDEQ source data, geographic NAD83, LOSCO [basin_subsegments_LDEQ_2004]: Louisiana Department of Environmental Quality. LA: Baton Rouge.

    Google Scholar 

  • Manzoni, S., & Porporato, A. (2009). Soil carbon and nitrogen mineralization: theory and models across scales. Soil Biology & Biochemistry, 41, 1355–1379.

    Article  CAS  Google Scholar 

  • Mitchell, T.D., Carter, T.R., Jones, P.D., Hulme, M., & New, M. (2004). A comprehensive set of high-resolution grids of monthly climate for Europe and the globe: the observed record (1901–2000) and 16 scenarios (2001–2100). Tyndall Centre for Climate Change Research Working Paper 55, 25. http://www.tyndall. ac.uk/publications/working_papers/wp55.pdf

  • Nakicenovic, N., Alcamo, J., Davis, G., de Vries, B., Fenhann, J., Gaffin, S., Gregory, K., Gru¨bler, A., Jung, T. Y., Kram, T., Emiliola Rovere, E., Michaelis, L., Mori, S., Morita, T., Pepper, W., Pitcher, H., Price, L., Riahi, K., Roehrl, A., Rogner, H.-H., Sankovski, A., Schlesinger, M. E., Shukla, P. R., Smith, S., Swart, R. J., van Rooyen, S., Victor, N., & Dadi, Z. (2000). Special report on emissions scenarios. Cambridge: Cambridge University Press.

    Google Scholar 

  • Nelson, D. W., & Sommers, L. E. (1982). Total carbon, organic carbon and organic matter. In: A. L. Page, R. H. Miller, and D. R. Keeney (Eds.), Methods of Soil Analysis (539–579). Wisconsin: American Society of Agronomy.

  • New, M., Hulme, M., & Jones, P. (1999). Representing twentieth-century space-time climate variability. Part I: development of a 1961–90 mean monthly terrestrial climatology. Journal of Climate, 12, 829–856.

    Article  Google Scholar 

  • Parton, W. J., Schimel, D. S., Cole, C. V., & Ojima, D. S. (1987). Analysis of factors controlling soil organic matter levels in Great Plains grasslands. Soil Science Society of America Journal, 51, 1173–1179.

  • Pope, V., Gallani, M. L., Rowntree, P. R., & Stratton, R. A. (2000). The impact of new physical parameterizations in the Hadley Centre climate model: HadAM3. Climate Dynamics, 16, 123–146.

    Article  Google Scholar 

  • Ruiz-Barradas, A., & Nigam, S. (2006). IPCC’s twentieth-century climate simulations: varied representations of north American hydroclimate variability. Journal of Climate, 19, 4041–4058.

    Article  Google Scholar 

  • SAS Institute. (2007). SAS User’s Guide, Release 9.1. Cary, NC: SAS Institute.

    Google Scholar 

  • Saxton, A. M. (1998). A macro for converting mean separation output to letter groupings in Proc Mixed. Pages 1243–1246 in Proc. 23rd SAS Users Group Int. Cary, NC, USA: SAS Inst. Inc.

    Google Scholar 

  • Schlesinger, W. H. (1997). Biogeochemistry: an analysis of global change. San Diego, California, USA: Academic.

    Google Scholar 

  • Sitch, S., Smith, B., Prentice, I. C., Arneth, A., Bondeau, A., Cramer, W., Kaplan, J. O., Levis, S., Lucht, W., Sykes, M. T., Thonicke, K., & Venevsky, S. (2003). Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Global Change Biology, 9, 161–185. doi:10.1046/j.1365-2486.2003.00569.x.

    Article  Google Scholar 

  • Smith, J., Smith, P., Wattenbach, M., Gottschalk, P., Romanenkov, V. A., Shevtsova, L. K., Sirotenko, O. D., Rukhovich, D. I., Koroleva, P. V., Romanenko, I. A., & Lisovoi, N. V. (2007). Projected changes in the organic carbon stocks of cropland mineral soils of European Russia and the Ukraine, 1990–2070. Global Change Biology, 13, 342–356.

    Article  Google Scholar 

  • Smith, J., Smith, P., Wattenbach, M., Zaehle, S., Hiederer, R., Jones, R. J. A., Montanarella, L., Rounsevell, M. D. A., Reginster, I., & Ewert, F. (2005). Projected changes in mineral soil carbon of European croplands and grasslands, 1990–2080. Global Change Biology, 11, 2141–2152.

    Article  Google Scholar 

  • Smith, P., Smith, J., Wattenbach, M., Meyer, J., Lindner, M., Zaehle, S., Hiederer, R., Jones, R. J. A., Montanarella, L., Rounsevell, M., Reginster, I., & Kankaanpaa, S. (2006). Projected changes in mineral soil carbon of European forests, 1990–2100. Canadian Journal of Soil Science, 86, 159–169.

    Article  CAS  Google Scholar 

  • Smith, W. N., Grant, B. B., Desjardins, R. L., Qian, B., Hutchinson, J., & Gameda, S. (2009). Potential impact of climate change on carbon in agricultural soils in Canada 2000–2099. Climatic Change, 93, 319–333.

    Article  CAS  Google Scholar 

  • Trumbore, S. E., Chadwick, O. A., & Amundson, R. (1996). Rapid exchange between soil carbon and atmospheric carbon dioxide driven by temperature change. Science, 272, 393–396.

    Article  CAS  Google Scholar 

  • U.S. Environmental Protection Agency. (2009). America’s wetlands (http://www.epa.gov/OWOW/wetlands/vital/toc.html).

  • Wang, F. G., & Xu, Y. J. (2011). Projecting climate change effects on forest net primary productivity in subtropical Louisiana, USA. Ambio, 40, 506–520.

    Article  Google Scholar 

  • White, A., Cannell, M. G. R., & Friend, A. D. (1999). Climate change impacts on ecosystems and the terrestrial carbon sink: a new assessment. Global Environmental Change-Human and Policy Dimensions, 9, S21–S30.

    Article  Google Scholar 

  • Wei, J. B., Xiao, D. N., Zhang, X. Y., Li, X. Z., & Li, X. Y. (2006). Spatial variability of soil organic carbon in relation to environmental factors of a typical small watershed in the Black Soil region, Northeast China. Environmental Monitoring and Assessment, 121, 595–611.

    Google Scholar 

  • Xu, Y.J., & Prisley, S. P. (2000). Linking STATSGO and FIA data for spatial analyses of land carbon densities. Proceedings CD ROM of the 3rd USDA Forest Service Southern GIS Conference. Athens, Georgia. Available on-line at http://www.soforgis.net/2000/cdrom/posters.html (verified on July 25, 2011).

  • Zaehle, S., Bondeau, A., Carter, T. R., Cramer, W., Erhard, M., Prentice, I. C., Reginster, I., Rounsevell, M. D. A., Sitch, S., Smith, B., Smith, P. C., & Sykes, M. (2007). Projected changes in terrestrial carbon storage in Europe under climate and land-use change, 1990–2100. Ecosystems, 10, 380–401.

    Article  CAS  Google Scholar 

  • Zhong, B., & Xu, Y. J. (2009). Topographic effects on soil organic carbon in Louisiana watersheds. Environmental Management, 43, 662–672.

    Article  Google Scholar 

  • Zhong, B., & Xu, Y. J. (2011a). Scale effects of geographical soil datasets on soil carbon estimation in Louisiana, USA: a comparison of STATSGO and SSURGO. Pedosphere, 21(4), 491–501.

    Article  CAS  Google Scholar 

  • Zhong, B., & Xu, Y. J. (2011b). Risk of inundation to coastal wetlands and soil carbon accounting in Louisiana, USA. Environmental Science & Technology, 45(19), 8241–8246.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Special thanks go to the Center for Computation & Technology of the Louisiana State University for its support with the climate data computation. We would also like to thank Jo Smith and Pete Smith from University of Aberdeen, UK, for their invaluable advice during the RothC modeling. The Climate Research Unit (CRU) in the School of Environmental Sciences at the University of East Anglia, UK, provided climate data. This research was supported through a Louisiana Board of Regents grant, Contract No.: LEQSF (2004–2007)-RD-A-04.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biao Zhong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, B., Xu, Y.J. Predicting climate change effects on surface soil organic carbon of Louisiana, USA. Environ Monit Assess 186, 6169–6192 (2014). https://doi.org/10.1007/s10661-014-3847-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-014-3847-x

Keywords

Navigation