Advertisement

Environmental Monitoring and Assessment

, Volume 186, Issue 10, pp 5969–5976 | Cite as

Soil adsorption studies of a rice herbicide, cyhalofop-butyl, in two texturally different soils of India

  • Shobha Sondhia
  • Rishi Raj Khare
Article

Abstract

The ability of herbicides to be adsorbed by the soil and sediment and their tendency to be desorbed are some of the most important factors affecting soil and water contamination. Therefore, a sorption study was conducted to evaluate the adsorption of cyhalofop-butyl, butyl (2R)-2-[4-(4-cyano-2-fluorophenoxy) phenoxy] propanoate, in the sandy clay loam and clayey soils using a batch equilibrium method. The adsorption of cyhalofop-butyl was found positively related with the clay and organic carbon content. Freundlich constants (K f) of cyhalofop-butyl in the clayey and sandy clay loam were found to be 13.39 and 2.21, respectively. Sorption coefficients (K oc) and distribution coefficients (K d) were found to be 265.38 and 2,092.79, and 1.38 and 11.48, for sandy clay loam and clayey soils, respectively. The adsorption isotherm suggested a relatively higher affinity of cyhalofop-butyl to the adsorption sites at low equilibrium concentrations. The low value of the soil organic carbon partition coefficient (K oc) of cyhalofop-butyl in the sandy loam soil suggested its weaker adsorption in soil and thus increased its risk of mobility into water sources; hence, it should be used judiciously to prevent groundwater contamination

Keywords

Adsorption Cyhalofop-butyl Clayey soils Herbicide Sandy clay loam Sorption 

References

  1. Ainsworth, C. C., Frederickson, J. K. & Smith, S. C. (1993). Effect of sorption on the degradation of aromatic acids and bases. In: Linn, D.M. (Ed.), Sorption and degradation of pesticides and organic chemicals in soil (pp. 125-144). SSSA special publication Vol. 32 Soil Science Society of America and American Society of Agronomy.Google Scholar
  2. Beckbolet, M., Yenigum, O., & Yucel, I. (1999). Sorption studies of 2, 4-D on selected soils. Water, Air and Soil Pollution, 111, 75–88.CrossRefGoogle Scholar
  3. Blasioli, S., Braschi, I., Pinna, M. V., Pusino, A., & Gessa, C. E. (2008). Effect of undesalted dissolved organic matter from composts on persistence, adsorption, and mobility of cyhalofop herbicide in soils. Journal of Agriculture and Food Chemistry, 56, 4102–4111.CrossRefGoogle Scholar
  4. Braverman, M. P., Dusky, J. A., Locascio, S. J., & Hornsby, A. G. (1990). Sorption and degradation of thiobencarb in three Florida soils. Weed Science, 38, 583–588.Google Scholar
  5. Calvert, R. (1980). Adsorption-desorption phenomena. In R. J. Hance (Ed.), Interaction between herbicides and the soil (pp. 1–30). London: Academic Press.Google Scholar
  6. Cheng, H.H. (1990). Pesticides in the soil environment an overview. In: Cheng H.H. (Ed.), Pesticides in the soil environment. Processes, impacts and modeling. (pp. 1-5), SSSA Book Series 2. SSSA, Madison, WI.Google Scholar
  7. Clay, S. A., & Koskinen, W. C. (1990). Characterization of alachlor and atrazine desorption from soils. Weed Science, 38, 74–80.Google Scholar
  8. Farmer, W.J. & Aochi, Y. (1987). Chemical conversion of pesticides in the soil-water environment. In: Biggar J. W. and Seiber, J. N. (Eds.), Fate of pesticides in the environment. University of California, Publication 3320.Google Scholar
  9. Ferreira, K. L., Burton, J. D., & Coble, H. D. (1995). Physiological basis for antagonism of fluazifop-P by DPX-PE350. Weed Science, 43, 184–191.Google Scholar
  10. Freundlich, H. M. F. (1906). Uber die adsorption in losungen. Zeitschrift für Physikalische Chemie, 57, 385–470.Google Scholar
  11. Gan, J., Baker, R. L., Koskinan, W. C., & Buhler, D. D. (1996). Degradation of atrazine in two soils as a function of concentration. Journal of Environmental Quality, 25, 1064–1072.CrossRefGoogle Scholar
  12. Giles, C. H., MacEwan, T. H., Nakhwa, S. N., & Smith, D. (1960). Studies in adsorption. Part XI. A system of classification of solution adsorption isotherms and its use in diagnosis of adsorption mechanisms and in measurement of specific surface areas of solids. Journal of Chemical Society, 111, 3973–3993.CrossRefGoogle Scholar
  13. Helling, C. S., Kearney, P. C., & Alexander, M. (1971). Behavior of pesticides in soil. Advances in Agronomy, 23, 147–240.CrossRefGoogle Scholar
  14. Hendly, P., Dicks, J. W., Monaco, T. J., Slyfield, S. M., Tummon, O. J., & Barret, J. C. (1985). Translocation and metabolism of pyridinyloxyphenoxypropionate herbicides in rhizomatous quack grass (Agropyron repens). Weed Science, 33, 11–24.Google Scholar
  15. Huang, C., Van Benschoten, J., & Jensen, J. (1996). Adsorption kinetics of MIB and geosmin. Journal of American Water Works Association, 88(4), 116–128.Google Scholar
  16. Iorio, M., Sannino, F., Martino, A.D., Pinna, M.V., & Capasso, R. (2007). Removal of cyhalofop acid from aqueous solutions by sorption on polymerin. In: Re, A. A. M. del, Capri, E.; Frago ulis, G. & Trevisan, M. (Eds.), Environmental fate and ecological effects of pesticides. pp. 607- 613.Google Scholar
  17. Jackson, M. L. (1973). Soil chemical analysis (pp. 58–69). New Delhi: Prentice Hall of India.Google Scholar
  18. Jackson, R., & Douglas, M. (1999). An aquatic risk assessment for cyhalofop-butyl: a new herbicide for control of barnyard grass in rice (pp. 345-354). Proceeding of XI Symposium Pesticide Chemistry: Human and environmental exposure to xenobiotics, Cremona, Italy.Google Scholar
  19. Jenks, B. M., Roeth, F. W., Martin, A. R., & McCallister, D. L. (1998). Influence of surface and subsurface soil properties on atrazine sorption and degradation. Weed Science, 46, 132–138.Google Scholar
  20. Jilisa, K., Mwa, I., Zhao, L., Zhu, G., & Chen, Y. (2001). Analytical methods for cyhalofop-butyl and its metabolites in soil and water. Chinese Journal of Pesticide Science, 3, 1573–3017.Google Scholar
  21. Jury, W. A., Focht, D. D., & Farmer, W. J. (1987). Evaluation of pesticide groundwater pollution from standard indices of soil chemical adsorption and biodegradation. Journal of Environmental Quality, 16, 422–428.CrossRefGoogle Scholar
  22. Kah, M., & Brown, C. D. (2007). Changes in pesticide adsorption with time at high soil to solution ratios. Chemosphere, 68, 1335–1343.CrossRefGoogle Scholar
  23. Ke, C. L., Gan, J. L., Chen, J. W., Wang, Z. H., Huang, K., Li, L. D., & Lin, Q. (2012). Influence of pH, ionic strength and temperature on adsorption of endosulfan to the aquaculture pond sediments. Fresenius Environmental Bulletin, 21, 3853–3858.Google Scholar
  24. Kennedy, A., Wilkins, R.M.W., & Lopez-Capel, E. (2002). Comparison of soil sorption measurement techniques for a C-14 anthranilate fungicide. In: BCPC Conference – Pests and Diseases pp. 285–290.Google Scholar
  25. Khan, S. U. (1982). Distribution and characteristics of bound residues of prometry in an organic soil. Journal of Agricultural Food Chemistry, 30, 175–183.CrossRefGoogle Scholar
  26. Koskinen, W. C., & Harper, S. S. (1990). The retention process: mechanisms. In H. H. Cheng (Ed.), Pesticides in the soil environment: processes, impacts and modeling (pp. 51–79). Madison: SSSA.Google Scholar
  27. Liu, Z., He, Y., Xu, J., Huang, P., & Jilani, G. (2008). The ratio of clay content to organic carbon content is a useful parameter to predict adsorption of the herbicide butachlor in soils. Environmental Pollution, 152(1), 163–171.CrossRefGoogle Scholar
  28. Matsumoto, T., Matsuya, K., Katahashi, H., Kondo, N., & Imai, Y. (1993). Cyhalofop-butyl: grass herbicide field performance in rice in Japan. (pp. 149-153). Proceeding of 10th Australian Weeds Conference and 14th Asian Pacific Weed Science Society Conference, Brisbane, Australia.Google Scholar
  29. Mountacer, Dahachour, M., Maghfour, A., Aatrallah. H., El Mrabaet, M.A. & Imache, A. (2007). Adsorption of cyhalofop-butyl on clay. Environmental fate and ecological effects of pesticides. pp. 231-236. Google Scholar
  30. Ntanos, D. A., Koutroubas, S. D., & Mavrotas, C. (2000). Barnyard grass (Echinochloa crus-galli) control in water seeded rice (Oryza sativa) with cyhalofop-butyl. Weed Technology, 14(2), 383–388.CrossRefGoogle Scholar
  31. OECD Guidelines for the Testing of Chemicals, (1997). Test no. 106: adsorption–desorption using a batch equilibrium method.Google Scholar
  32. Patnaik, G. K., Kanungo, P. K., Moorthy, B. T., Mahana, P. K., Adhya, T. K., & Rao, V. R. (1995). Effect of herbicides on nitrogen fixation (C2H2 reduction) associated with rice rhizosphere. Chemosphere, 30(2), 339–343.CrossRefGoogle Scholar
  33. Pionke, H. B. & De Angelis, R. J. (1980). Method for distributing pesticide loss in field runoff between the solution and adsorbed phase. In: CREAMS. A field scale model for chemicals runoff and erosion from agricultural management systems (pp. 607–643). USDA Conservation Research Report. 26. USDA. SEA, Washington DC.Google Scholar
  34. Pirbazari, M., Ravindran, V., Badriyha, B., Craig, S., & McGuire, M. (1993). GAC adsorber design protocols for the removal of off flavors. Water Research, 27(7), 1153–1166.CrossRefGoogle Scholar
  35. Que Hee, S. S., & Sutherland, R. G. (1981). The phenoxyalkanoic herbicides. Vol 1, CRC series in pesticide chemistry. Boca Raton: CRC Press.Google Scholar
  36. Raman, S., & Rao, C. P. (1987). Effect of soil moisture on persistence of soil applied tubuthiuron. Toxicologicaland Environmental Chemistry, 15, 265–273.Google Scholar
  37. Rao, P. S. C., Bellin, C. A. & Brusseau, M. L. (1993). Coupling biodegradation of organic chemicals to sorption and transport in soils and aquifers: paradigms and paradoxes. In: Linn, D.M. (Ed.), Sorption and degradation of pesticides and organic chemicals in soil (pp. 1-26). SSSA Special Publication Vol. 32, Soil Science Society of America and American Society of Agronomy, Madison, WI.Google Scholar
  38. Ray, P.G., Pews, R.G., Flake, J., Secor, J., & Hamburg, A. (1993). Cyhalofop butyl: a new graminicide for use in rice. In: Swarbrick, J.T., Henderson, C.W.L., Jettner, R.J., Streit, L., Walker, S.R., (Eds.), Proceeding 10th Australian and 14th Asian Pacific Weeds Conf., (pp. 41-44). Weed Soc. Queensland, Brisbane, Australia.Google Scholar
  39. Reddy, K. N., Zablotowicz, R. M., & Locke, M. A. (1995). Chlorimuron adsorption, desorption and degradation in soils from conventional tillage and non tillage systems. Journal of Environmental Quality, 24, 760–767.CrossRefGoogle Scholar
  40. Ruiz-Santaella, J. P., Heredia, A., & Prado, R. D. (2006). Basis of selectivity of cyhalofop-butyl in Oryza sativa L. Planta, 223(2), 191–199.CrossRefGoogle Scholar
  41. Seybold, C. A., Mc Sweeney, K., & Lowery, B. (1994). Atrazine adsorption in sandy soils of Wisconsin. Journal of Environmental Quality, 23, 1291–1297.CrossRefGoogle Scholar
  42. Sondhia, S. (2007). Evaluation of leaching potential of pendimethalin in clay loam soil. Pesticide Research Journal, 19, 119–121.Google Scholar
  43. Sondhia, S. (2008). Determination of imazosulfuron persistence in rice crop and soil. Environmental Monitoring and Assessment, 137, 205–211.Google Scholar
  44. Sondhia, S. (2009). Persistence of metsulfuron-methyl residues in paddy field and detection of its residues in crop produce. Bulletin of Environmental Contamination and Toxicology, 83(6), 799–802.CrossRefGoogle Scholar
  45. Sondhia, S. (2014). Evaluation of cyhalofop-butyl leaching in sandy loam soil under field conditions. Extended summary in proceedings of Biennial Conference of Indian Society of Weed Science, India, p 287.Google Scholar
  46. Sondhia, S., & Yaduraju, N. T. (2005). Evaluation of leaching of atrazine and metribuzin in sandy clay loam soil. Indian Journal of Weed Science, 37(3&4), 298–300.Google Scholar
  47. Spark, K. M., & Swift, R. S. (2002). Effect of soil composition and dissolved organic matter on pesticide sorption. Science of the Total Environment, 298, 147–161.CrossRefGoogle Scholar
  48. Sposito, G. (1984). The surface chemistry of soils. New York: Oxford University Press.Google Scholar
  49. Wang, J., Wang, F., Yao, J., Guo, H., Blake, R. E., Choi, M. M. F., & Song, C. (2013). Effect of pH and temperature on adsorption of dimethyl phthalate on carbon nanotubes in aqueous phase. Analytical Letters, 46(2), 379–393.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Directorate of Weed Science ResearchJabalpurIndia
  2. 2.Department of Soil ScienceJawaharlal Nehru Agricultural UniversityJabalpurIndia

Personalised recommendations