Environmental Monitoring and Assessment

, Volume 186, Issue 9, pp 5697–5709 | Cite as

Diversity and dynamics of the Vibrio community in well water used for drinking in Guinea-Bissau (West Africa)



Bacteria of the genus Vibrio are ubiquitous in aquatic environments and can be found either in culturable or in a viable but nonculturable (VBNC) state. The genus comprises many pathogenic species accountable for water and food-borne diseases that prove to be fatal, especially in developing countries, as in Guinea-Bissau (West Africa), where cholera is endemic. In order to ascertain the abundance and structure of Vibrio spp. community in well waters that serve as the sole source of water for the population, quantitative polymerase chain reaction (qPCR), PCR-denaturant gradient gel electrophoresis (DGGE), and cloning approaches were used. Results suggest that Vibrio spp. were present throughout the year in acidic, freshwater wells with a seasonal community composition shift. Vibrio spp. abundance was in accordance with the abundance found in coastal environments. Sequences closely related to pathogenic Vibrio species were retrieved from well water revealing exposure of the population to such pathogens. pH, ammonium, and turbidity, regulated by the rain pattern, seem to be the variables that contributed mostly to the shaping and selection of the Vibrio spp. community. These results reinforce the evidence for water monitoring with culture-independent methods and the clear need to create/recover water infrastructures and a proper water resources management in West African countries with similar environmental conditions.


Vibrio Denaturant gradient gel electrophoresis qPCR Drinking water Guinea-Bissau West Africa 



We thank International Medical Assistance (AMI) and Ayuda, Intercambio y Desarrollo–Bissau (AIDA) for logistic support and Mr. Alfa for fieldwork assistance. This study was funded through a PhD fellowship to A. Machado (SFRH/BD/46146/2008) co-financed by POPH/FSE and a grant to A. Bordalo (PTDC/AAC-CLI/103539/2008). This research was also partially supported by the European Regional Development Fund (ERDF) through the COMPETE - Operational Competitiveness Programme and national funds through FCT - Foundation for Science and Technology, under the project “PEst-C/MAR/LA0015/2013.”


  1. Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215(3), 403–410. doi: 10.1016/S0022-2836(05)80360-2.CrossRefGoogle Scholar
  2. Barrett, J. E., Virginia, R. A., Wall, D. H., Cary, S. C., Adams, B. J., Hacker, A. L., et al. (2006). Co-variation in soil biodiversity and biogeochemistry in northern and southern Victoria Land, Antarctica. Antarctic Science, 18(4), 535–548. doi: 10.1017/S0954102006000587.CrossRefGoogle Scholar
  3. Böer, S. I., Heinemeyer, E.-A., Luden, K., Erler, R., Gerdts, G., Janssen, F., et al. (2013). Temporal and spatial distribution patterns of potentially pathogenic Vibrio spp. at recreational beaches of the German North Sea. Microbial Ecology, 65(4), 1052–1067. doi: 10.1007/s00248-013-0221-4.CrossRefGoogle Scholar
  4. Bordalo, A. A. (2003). Microbiological water quality in urban coastal beaches: the influence of water dynamics and optimization of the sampling strategy. Water Research, 37(13), 3233–3241. doi: 10.1016/S0043-1354(03)00152-0.CrossRefGoogle Scholar
  5. Bordalo, A. A., & Savva-Bordalo, J. (2007). The quest for safe drinking water: an example from Guinea-Bissau (West Africa). Water Research, 41(13), 2978–2986. doi: 10.1016/j.watres.2007.03.021.CrossRefGoogle Scholar
  6. Bullen, J. J., Spalding, P. B., Ward, C. G., & Gutteridge, J. M. C. (1991). Haemochromatosis, iron, and septicaemia caused by Vibrio vulnificus. Archives of Internal Medicine, 151(8), 1606–1609. doi: 10.1001/archinte.1991.00400080096018.CrossRefGoogle Scholar
  7. Cavallo, R. A., & Stabili, L. (2002). Presence of vibrios in sea-water and Mytilus galloprovincialis from the Mar Piccolo of Taranto. Water Research, 36(15), 3719–3726. doi: 10.1016/S0043-1354(02)00107-0.CrossRefGoogle Scholar
  8. Clarke, K. R. (1999). Nonmetric multivariate analysis in community-level ecotoxicology. Environmental Toxicology & Chemistry, 18(2), 118–127. doi: 10.1002/etc.5620180205.CrossRefGoogle Scholar
  9. Clarke, K. R., & Gorley, R. N. (2006). PRIMER v6: user manual/tutorial. Plymouth: PRIMER-E.Google Scholar
  10. Colwell, R. (2000). Viable but nonculturable bacteria: survival strategy. Journal of Infection and Chemotherapy, 6(2), 121–125. doi: 10.1007/PL00012151.CrossRefGoogle Scholar
  11. Colwell, R. R., & Spira, W. M. (1992). The ecology of Vibrio cholerae. In D. Barua & W. B. Greenough III (Eds.), Cholera (3rd ed., pp. 107–127). New York: Plenum Medical Book.CrossRefGoogle Scholar
  12. Dempster, E. L., Pryor, K. V., Francis, D., Young, J. E., & Rogers, H. J. (1999). Rapid DNA extraction from ferns for PCR-based analyses. Biotechniques, 27(1), 66–68.Google Scholar
  13. Eiler, A., & Bertilsson, S. (2006). Detection and quantification of Vibrio populations using denaturant gradient gel electrophoresis. Journal of Microbiological Methods, 67(2), 339–348. doi: 10.1016/j.mimet.2006.04.002.CrossRefGoogle Scholar
  14. European Union. (1998). Council directive 98/83/EC of 3 November on the quality of water intended for human consumption. L 330, 05/12/1998, pp 32 –54. Retrieved from http://eur-lex.europa.eu/legal-content/EN/ALL/;jsessionid=M6MMTxzQ2cZG2nQvM66NpL35WCRy5jV3B72zj0TlbsP3QWh21r1h!1518928790?uri=CELEX:31998L0083.
  15. Fries, J. S., Characklis, G. W., & Noble, R. T. (2008). Sediment–water exchange of Vibrio sp. and fecal indicator bacteria: implications for persistence and transport in the Neuse River Estuary, North Carolina, USA. Water Research, 42(4–5), 941–950. doi: 10.1016/j.watres.2007.09.006.CrossRefGoogle Scholar
  16. Fujioka, R. S., & Yoneyama, B. S. (2002). Sunlight inactivation of human enteric viruses and fecal bacteria. Water Science and Technology, 46(11–12), 291–295. Retrieved from http://www.iwaponline.com/wst/04611/wst046110291.htm.Google Scholar
  17. Hall, T. A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95–98. Retrieved from http://jwbrown.mbio.ncsu.edu/JWB/papers/1999Hall1.pdf.Google Scholar
  18. Havemann, S. A., & Foster, J. S. (2008). Comparative characterization of the microbial diversities of an artificial microbialite model and a natural stromatolite. Applied and Environmental Microbiology, 74(23), 7410–7421. doi: 10.1128/AEM.01710-08.CrossRefGoogle Scholar
  19. Heidelberg, J. F., Heidelberg, K. B., & Colwell, R. R. (2002). Bacteria of the γ-subclass Proteobacteria associated with zooplankton in the Chesapeake Bay. Applied and Environmental Microbiology, 68(11), 5498–5507. doi: 10.1128/AEM.68.11.5498-5507.2002.CrossRefGoogle Scholar
  20. Hervio-Heath, D., Colwell, R. R., Derrien, A., Robert-Pillot, A., Fournier, J. M., & Pommepuy, M. (2002). Occurrence of pathogenic vibrios in coastal areas of France. Applied and Environmental Microbiology, 92(6), 1123–1135. doi: 10.1046/j.1365-2672.2002.01663.x.CrossRefGoogle Scholar
  21. Hlady, W. G., Mullen, R. C., & Hopkin, R. S. (1993). Vibrio vulnificus from raw oysters. Leading cause of reported deaths from foodborne illness in Florida. Journal of the Florida Medical Association, 80(8), 536–538.Google Scholar
  22. Hsieh, J. L., Fries, J. S., & Noble, R. T. (2008). Dynamics and predictive modelling of Vibrio spp. in the Neuse River Estuary, North Carolina, USA. Environmental Microbiology, 10(1), 57–64. doi: 10.1111/j.1462-2920.2007.01429.x.Google Scholar
  23. Hughes, K. A. (2003). Influence of seasonal environmental variables on the distribution of presumptive fecal coliforms around an Antarctic research station. Applied and Environmental Microbiology, 69(8), 4884–4891. doi: 10.1128/AEM.69.8.4884-4891.2003.CrossRefGoogle Scholar
  24. Igbinosa, E. O., & Okoh, A. I. (2008). Emerging Vibrio species: an unending threat to public health in developing countries. Research in Microbiology, 159(7–8), 495–506. doi: 10.1016/j.resmic.2008.07.001.CrossRefGoogle Scholar
  25. Jalloh, A., Roy-Macauley, H., & Sereme, P. (2012). Major agro-ecosystems of west and central Africa: brief description, species richness, management, environmental limitations and concerns. Agriculture, Ecosystems & Environment, 157, 5–16. doi: 10.1016/j.agee.2011.11.019.CrossRefGoogle Scholar
  26. Jang, J., Jung, K. T., Yoo, C. K., & Rhie, G. E. (2010). Regulation of hemagglutinin/protease expression by the VarS.VarA-CsrA/B/C/D system in Vibrio cholerae. Microbial Pathogenesis, 48(6), 245–250. doi: 10.1016/j.micpath.2010.03.003.CrossRefGoogle Scholar
  27. Jiang, S. C., & Fu, W. (2001). Seasonal abundance and distribution of Vibrio cholerae in coastal waters quantified by a 16S–23S intergenic spacer probe. Microbial Ecology, 42(4), 540–548. doi: 10.1007/s00248-001-0029-5.CrossRefGoogle Scholar
  28. Johnson, C. N., Flowers, A. R., Noriea, N. F., III, Zimmerman, A. M., Bowers, J. C., DePaola, A., et al. (2010). Relationships between environmental factors and pathogenic vibrios in the Northern Gulf of Mexico. Applied and Environmental Microbiology, 76(21), 7076–7084. doi: 10.1128/AEM.00697-10.CrossRefGoogle Scholar
  29. Johnson, C. N., Bowers, J. C., Griffitt, K. J., Molina, V., Clostio, R. W., Pei, S., et al. (2012). Ecology of Vibrio parahaemolyticus and Vibrio vulnificus in the coastal and estuarine waters of Louisiana, Maryland, Mississippi, and Washington (United States). Applied and Environmental Microbiology, 78(20), 7249–7257. doi: 10.1128/AEM.01296-12.CrossRefGoogle Scholar
  30. Lane, D. J. (1991). 16S/23S rRNA sequencing. In E. Stackebrandt & M. Goodfellow (Eds.), Nucleic acid techniques in bacterial systematics (pp. 115–175). New York: Wiley.Google Scholar
  31. Lipp, E. K., & Rose, J. B. (1997). The role of seafood in foodborne disease in the United States of America. Revue Scientifique et Technique, 16(2), 620–640. Retrieved from http://www.oie.int/doc/ged/D9171.PDF.Google Scholar
  32. Luquero, F. J., Na Banga, C., Remartínez, D., Palma, P. P., Baron, E., & Grais, R. F. (2011). Cholera epidemic in Guinea-Bissau (2008): the importance of “place.”. PLoS One, 6(5), e19005. doi: 10.1371/journal.pone.0019005.CrossRefGoogle Scholar
  33. Mahmud, Z. H., Neogi, S. B., Kassu, A., Mai Huong, B. T., Jahid, I. K., Islam, M. S., et al. (2008). Occurrence, seasonality and genetic diversity of Vibrio vulnificus in coastal seaweeds and water along the Kii Channel, Japan. FEMS Microbiology Ecology, 64(2), 209–218. doi: 10.1111/j.1574-6941.2008.00460.x.CrossRefGoogle Scholar
  34. Mazari-Hiriart, M., López-Vidal, Y., Ponce-de-León, S., Calva, J. J., Rojo-Callejas, F., & Castillo-Rojas, G. (2005). Longitudinal study of microbial diversity and seasonality in the Mexico City metropolitan area water supply system. Applied and Environmental Microbiology, 71(9), 5129–5137. doi: 10.1128/AEM.71.9.5129-5137.2005.CrossRefGoogle Scholar
  35. McDougald, D., Rice, S. A., Weichart, D., & Kjelleberg, S. (1998). Nonculturability: adaptation or debilitation? FEMS Microbiology Ecology, 25(1), 1–9. doi: 10.1111/j.1574-6941.1998.tb00455.x.CrossRefGoogle Scholar
  36. Merrell, D. S., & Camilli, A. (1999). The cadA gene of Vibrio cholerae is induced during infection and plays a role in acid tolerance. Molecular Microbiology, 34(4), 836–849. doi: 10.1046/j.1365-2958.1999.01650.x.CrossRefGoogle Scholar
  37. Miyamoto, Y., Kato, T., Obara, Y., Akiyama, S., Takizawa, K., & Yamai, S. (1969). In vitro hemolytic characteristic of Vibrio parahaemolyticus: its close correlation with human pathogenicity. Journal of Bacteriology, 100(2), 1147–1149.Google Scholar
  38. Neogi, S. B., Islam, M. S., Nair, G. B., Yamasaki, S., & Lara, R. J. (2012). Occurrence and distribution of plankton-associated and free-living toxigenic Vibrio cholerae in a tropical estuary of a cholera endemic zone. Wetlands Ecology and Management, 20(3), 271–285. doi: 10.1007/s11273-012-9247-5.CrossRefGoogle Scholar
  39. Nowakowska, J., & Oliver, J. D. (2013). Resistance to environmental stresses by Vibrio vulnificus in the viable but nonculturable state. FEMS Microbiology Ecology, 84, 213–222. doi: 10.1111/1574-6941.12052.CrossRefGoogle Scholar
  40. Oberbeckmann, S., Fuchs, B. M., Meiners, M., Wichels, A., Wiltshire, K. H., & Gerdts, G. (2012). Seasonal dynamics and modeling of a Vibrio community in coastal waters of the North Sea. Microbial Ecology, 63(3), 543–551. doi: 10.1007/s00248-011-9990-9.CrossRefGoogle Scholar
  41. Ramaiah, N., Ravel, J., Straube, W. L., Hill, R. T., & Colwell, R. R. (2002). Entry of Vibrio harveyi and Vibrio fischeri into viable but nonculturable state. Journal of Applied Microbiology, 93(1), 108–116. doi: 10.1046/j.1365-2672.2002.01666.x.CrossRefGoogle Scholar
  42. Rashid, A., Haley, B. J., Rajabov, M., Ahmadova, S., Gurbanov, S., Colwell, R. R., et al. (2013). Detection of Vibrio cholerae in environmental waters including drinking water reservoirs of Azerbaijan. Environmental Microbiology Reports, 5(1), 30–38. doi: 10.1111/j.1758-2229.2012.00369.x.CrossRefGoogle Scholar
  43. Rivera, I. N. G., Chun, J., Huq, A., Sack, R. B., & Colwell, R. R. (2001). Genotypes associated with virulence in environmental isolates of Vibrio cholerae. Journal of Applied Microbiology, 67(6), 2421–2429. doi: 10.1128/AEM.67.6.2421-2429.2001.CrossRefGoogle Scholar
  44. Roszak, R. B., & Colwell, R. R. (1987). Survival strategies of bacteria in the natural environment. Microbiological Reviews, 51(3), 365–379.Google Scholar
  45. September, S. M., Els, F. A., Venter, S. N., & Brözel, V. S. (2007). Prevalence of bacterial pathogens in biofilms of drinking water distribution systems. Journal of Water Health, 5(2), 219–227. doi: 10.2166/wh.2007.004.Google Scholar
  46. Staley, C. (2012). Investigation of reservoirs of fecal indicator bacteria and water quality on the presence of allochthonous pathogens and the ecology and virulence of Vibrio vulnificus. Dissertation, University of South California. Retrieved from http://scholarcommons.usf.edu/etd/4228.
  47. Tamura, K., Dudley, J., Nei, M., & Kumar, S. (2007). MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology and Evolution, 24(8), 1596–1599. doi: 10.1093/molbev/msm092.CrossRefGoogle Scholar
  48. ter Braak, C. J. F., & Smilauer, P. (2002). CANOCO reference manual and Canodraw for Windows user’s guide: Software for canonical community ordination (version 4.5). New York: Microcomputer Power.Google Scholar
  49. Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). ClustalW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specif gap penalties and weight matrix choice. Nucleic Acids Research, 22(22), 4673–4680. doi: 10.1093/nar/22.22.4673.CrossRefGoogle Scholar
  50. Thompson, F. L., Lida, T., & Swings, J. (2004a). Biodiversity of vibrios. Microbiology and Molecular Biology Reviews, 68(3), 403–431. doi: 10.1128/MMBR.68.3.403-431.2004.CrossRefGoogle Scholar
  51. Thompson, J. R., Randa, M. A., Marcelino, L. A., Tomita-Mitchell, A., Lim, E., & Polz, M. F. (2004b). Diversity and dynamics of a North Atlantic coastal Vibrio community. Applied and Environmental Microbiology, 70(7), 4103–4110. doi: 10.1128/AEM.70.7.4103-4110.2004.CrossRefGoogle Scholar
  52. Vezzulli, L., Colwell, R. R., & Pruzzo, C. (2013). Ocean warming and spread of pathogenic vibrios in the aquatic environment. Microbial Ecology, 65(4), 817–825. doi: 10.1007/s00248-012-0163-2.CrossRefGoogle Scholar
  53. Wachsmuth, I. K., Blake, P. A., & Olsvik, O. (1994). Vibrio cholerae and cholera: Molecular to global perspectives. Washington, DC: American Society for Microbiology Press.Google Scholar
  54. Watkins, W. D., & Cabelli, V. J. (1985). Effect of fecal pollution on Vibrio parahaemolyticus densities in an estuarine environment. Applied and Environmental Microbiology, 49(5), 1307–1313.Google Scholar
  55. Whistler, C. A., & Ruby, E. G. (2003). GacA regulates symbiotic colonization traits of Vibrio fischeri and facilitates a beneficial association with an animal host. Journal of Bacteriology, 185(24), 7202–7212. doi: 10.1128/JB.185.24.7202-7212.2003.CrossRefGoogle Scholar
  56. Wingender, J., & Fleming, H.-C. (2011). Biofilms in drinking water and their role as reservoirs for pathogens. International Journal of Hygiene and Environmental Health, 214(6), 417–423. doi: 10.1016/j.ijheh.2011.05.009.CrossRefGoogle Scholar
  57. Wong, H. C., & Wang, P. (2004). Induction of viable but nonculturable state in Vibrio parahaemolyticus and its susceptibility to environmental stresses. Journal of Applied Microbiology, 96(2), 359–366. doi: 10.1046/j.1365-2672.2004.02166.x.
  58. World Health Organization (WHO). (2006). Guidelines for drinking-water quality, 1st Addedum to 3rd edn., vol. 1. Geneva: World Health Organization. Retrieved from http://www.who.int/water_sanitation_health/dwq/fulltext.pdf?ua=1.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Laboratory of Hydrobiology and Ecology, Institute of Biomedical Sciences (ICBAS-UP)University of PortoPortoPortugal
  2. 2.CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental ResearchUniversity of PortoPortoPortugal

Personalised recommendations