Advertisement

Environmental Monitoring and Assessment

, Volume 186, Issue 8, pp 4997–5007 | Cite as

Evaluation of dispersal volcanic products of recent events in lichens in environmental gradient, Nahuel Huapi National Park, Argentina

  • Débora Bubach
  • Leandro Dufou
  • Soledad Perez Catán
Article

Abstract

The atmospheric transport of volcanic products are subject to several variables, mainly the height of the eruption column and wind direction, thus elements associated with the ashes are deposited in major or lesser degree depending on variables as latitude, wind and humidity. The lichens are able to reflect the atmospheric fallout. The present work evaluated the correlation between meteorological parameters, geographic locations, sulphur and other element concentrations in lichens genus Usnea affected by Puyehue–Cordón Caulle complex (North Patagonia Andean Range) eruption of June 4, 2011. Semiquantitative analyses of biological elements by scanning electron microscope methods, sulphur (S) by LECO and other elements by instrumental neutron activation were evaluated by principal component analysis. Elements as antimony, arsenic, barium, bromine, calcium, caesium, potassium, rubidium, selenium, and uranium correlated with distance to volcano, also calcium and potassium with longitude while bromine, rubidium, and potassium with humidity. Those results indicate that Usnea sp. is a good bioindicator of the atmospheric volcanic emissions in relation to environmental gradient.

Keywords

Lichen Sulphur Volcanic eruption Elements Humidity 

Notes

Acknowledgements

The authors wish to express their gratitude to Ricardo Sanchez for the sampling and sample preparation, María Arribére for her critical reading and suggestions, the reactor RA–6 operation staff for their assistance in sample analysis and Carolina Ayala (Grupo de Caracterización de Materiales del Centro Atómico Bariloche) for the SEM analysis.

Supplementary material

10661_2014_3754_MOESM1_ESM.docx (24 kb)
ESM 1 (DOCX 23 kb)
10661_2014_3754_MOESM2_ESM.docx (20 kb)
ESM 2 (DOCX 20 kb)
10661_2014_3754_MOESM3_ESM.docx (20 kb)
ESM 3 (DOCX 20 kb)

References

  1. Baikey, G. D. (1987). Bibliography of soil taxonomy 1960-1979. Wallingford: Report. Commonwealth Agricultural International Bureaux.Google Scholar
  2. Bailey, R. A., Clark, H. M., Ferris, J. P., Krause, S., & Strong, R. (2002). Chemistry of the environment. New York: Academic.Google Scholar
  3. Barthelemy, D., Brion, C., & Puntieri, J. (2008). Plantas de la Patagonia. Buenos Aires: Vazquez Manzini.Google Scholar
  4. Bennet, J. P. (2008). Discrimination of lichen genera and species using element concentrations. The Lichenologist, 40, 135–151.Google Scholar
  5. Bennet, J. P., & Wetmore, C. M. (1997). Chemical element concentrations in four lichens on a transect entering Voyageurs National Park. Environmental and Experimental Botany, 37, 173–185.CrossRefGoogle Scholar
  6. Bubach, D., Perez Catán, S., Arribére, M. A., & Ribeiro Guevara, S. (2012). Bioindication of volatile elements emission by the Puyehue–Cordón Caulle (North Patagonia) volcanic event in 2011. Chemosphere, 88, 584–590.CrossRefGoogle Scholar
  7. Chimner, R. A., Bonvissuto, G. L., Cremona, M. V., Gaitan, J. J., & López, C. R. (2011). Ecohydrological conditions of wetlands along a precipitation gradient in Patagonia, Argentina. Austral Ecology, 21, 329–337.Google Scholar
  8. Conti, M. E., & Cecchetti, G. (2001). Biological monitoring as bioindicators of air pollution assessment—a review. Environmental Pollution, 114, 471–492.CrossRefGoogle Scholar
  9. Cruzate, G. A., López, C., Ayesa, J., & Panigatti, J. L. (2006a). Suelos y Ambientes, Neuquén-Argentina. Argentina: INTA-50 años.Google Scholar
  10. Cruzate, G. A., López, C., Ayesa, J., & Panigatti, J. L. (2006b). Suelos y Ambientes, Río Negro-Argentina. Argentina: INTA-50 años.Google Scholar
  11. Davies, F., & Notcutt, G. (1996). Bomonitoring of atmospheric mercury in the vicinity of Kilauea, Hawaii. Water, Air, & Soil Pollution, 86, 275–281.CrossRefGoogle Scholar
  12. Dezzotti, A., & Sancholuz, L. (1991). Los bosques de Autrocedrus chilensis en Argentina: ubicación, estructura y crecimiento. Bosque, 12(2), 43–52.Google Scholar
  13. Dirección de Bosques. (2003). Atlas de los Bosques Nativos Argentinos. Buenos Aires, Argentina: Proyecto Bosques Nativos y Áreas Protegidas BIRF 4085-AR, Dirección de Bosques, Secretaría de Ambiente y Desarrollo Sustentable.Google Scholar
  14. Fenn, M. E., Geiser, L., Bachman, R., Blubaugh, T. J., & Bytnerowicz, A. (2007). Atmospheric deposition inputs and effects on lichen chemistry and indicator species in the Columbia River George, USA. Environmental Pollution, 146, 77–91.CrossRefGoogle Scholar
  15. Fitter, A. H., & Hay, R. M. (2002). Environmental physiology of plants. New York: Accademic Press.Google Scholar
  16. Flaathen, T. K., & Gislason, S. R. (2007). The effect of volcanic eruptions on the chemistry of surface waters: the 1991 and 2000 eruptions of Mt. Hekla, Iceland. Journal of Volcanology and Geothermical Research, 164, 293–316.CrossRefGoogle Scholar
  17. Fujita, S. I., Sakuri, T., & Matsuda, K. (2003). Wet and dry deposition of sulfur associated with the eruption of Miyakejima volcano, Japan. Journal of Geophysical Research, 108(D15), 4444. doi: 10.1029/2002JD003064.CrossRefGoogle Scholar
  18. Gaitan, J. J., Ayesa, J. A., Umaña, F., Raffo, F., & Bran, D. B. (2011). Cartografía del área afectada por cenizas volcánicas en las provincias de Río Negro y Neuquén. Instituto Nacional de Tecnología Agropecuaria (INTA): Laboratorio de Teledetección – SIG. Estación Experimental San Carlos de Bariloche.Google Scholar
  19. Garty, J. (2001). Biomonitoring atmospheric heavy metals with lichens: theory and application. Plant Sciences, 20(4), 309–371. doi: 10.1080/20013591099254.Google Scholar
  20. Garty, J., & Garty-Spitz, R. L. (2011). Neutralization and neoformation: analogous processes in the atmosphere and in lichen thalli—A review. Environmental and Experimental Botany, 70, 67–79.CrossRefGoogle Scholar
  21. Garty, J., Tamir, O., Cohen, Y., Lehr, H., & Goren, A. I. (2002). Changes in the potential quantum yield of photosystem II and integrity of cell membranes relative to the elemental content of the epilithic desert lichen Ramalina maciformis. Environmental Toxicology and Chemistry, 21(4), 848–858.CrossRefGoogle Scholar
  22. Godinho, R. M., Wolterbeek, H. T., Verburg, T., & Freitas, M. C. (2008). Bioaccumulation behaviour of transplants of the lichen Flavoparmelia caperata in relation to total deposition at a polluted location in Portugal. Environmental Pollution, 151, 318–325.CrossRefGoogle Scholar
  23. Grasso, M. F., Clocchiatti, R., Carrot, F., Deschamps, C., & Vurro, F. (1999). Lichens as bioindicators in volcanic areas: Mt. Etna and Vulcano Island (Italy). Environmental Geology, 37(3), 207–217.CrossRefGoogle Scholar
  24. McGonigle, A. J. S., Delmelle, P., Oppenheimer, C., Tsanev, V. I., Delfosse, T., Williams-Jones, G., et al. (2004). SO2 depletion in tropospheric volcanic plumes. Geophysical Research Letters. doi: 10.1029/2004GL019990.Google Scholar
  25. Monaci, F., Fantozzi, F., Figueroa, R., Parra, O., & Bargagli, R. (2012). Baseline element composition of foliose and fruticose lichens along the steep climatic gradient of SW Patagonia (Aisén Region, Chile). Journal of Environmental Monitoring. doi: 10.1039/c2em30246b.Google Scholar
  26. Moser, T. J., Swafford, J. R., & Nash, T. H., III. (1983). Impact of Mt. St. Helens emissions on two lichen species of south-central Washington. Environmental Experimental Botany, 23, 321–329.CrossRefGoogle Scholar
  27. Moune, S., Gauthier, P. J., & Delmelle, P. (2010). Trace elements in the particulate phase of the plume of Masaya Volcano, Nicaragua. Journal of Volcanology and Geothermal Research, 193, 232–244.CrossRefGoogle Scholar
  28. NASA (National Aeronautics and Space Administration Goddard Space Flight Center) (2011). http://earthobservatory.nasa.gov/GlobalMaps/view.php?d1=CERES_NETFLUX_M.
  29. Nuñez, C. I., Raffaele, E., Nuñez, M., & Cuassolo, F. (2009). When do nurse plants stop nursing? Temporal changes in water stress levels in Austrocedrus chilensis growing within and outside shrubs. Journal of Vegetation Science, 20, 1064–1071.CrossRefGoogle Scholar
  30. Olszowski, T., Tomaszwska, B., & Góralna-Wlodarczyk, K. (2012). Air quality in non industrialised area in the typical Polish countryside based on measurements of selected pollutants in immission and deposition phase. Atmospheric Environment, 50, 139–147.CrossRefGoogle Scholar
  31. Pfeffer, M. A., Langmann, B., & Graf, H. F. (2006). Atmospheric transport and deposition of Indonesian volcanic emissions. Atmospheric Chemistry and Physics, 6, 2525–2537.CrossRefGoogle Scholar
  32. Salisbury, F., & Ross, C. (1991). Plant physiology. Belmont, California: Wadsworth.Google Scholar
  33. Suchara, F. (2012). Temporal and spatial changes in spruce bark acidity at the scale of the Czech Republic in the last two decades, and the current abundance of epiphytic lichen Hypogymnia physodes. Water, Air, & Soil Pollution, 223, 1685–1697.CrossRefGoogle Scholar
  34. Symonds, R. B., Rose, W. I., Reed, M. H., Litchte, F. E., & Finnegan, D. L. (1987). Volatilisation, transport and sublimation of metallic and non-metallic elements in high temperature gases at Merapi Volcano, Indonesia. Geochimca et Cosmochimica Acta, 51, 2083–2101.CrossRefGoogle Scholar
  35. Texeira, M., Paruelo, J. M., Oyarzabal, M., & Arocena, M. D. (2010). Patrones espaciales y temporales en el funcionamiento de la vegetación del sudoeste de Buenos Aires y el norte de la Patagonia: generacion de una base de datos de aplicación en la implementación de seguros agropecuarios. Argentina: Project report. Programa de Servicios Agrícolas Provinciales, (PROSAP), Ministerio de Agricultura, Ganadería y Pesca (MAGyP).Google Scholar
  36. Veblen, T. T., Mermoz, M., Martin, C., & Kitzberger, T. (1992). Ecological Impacts of introduced animals in Nahuel Huapi National Park, Argentina. Conservation Biology, 6(1), 71–83.CrossRefGoogle Scholar
  37. Wasserman, R. H. (1998). Strontium as a tracer for calcium in biological and clinical research. Clinical Chemistry, 3, 437–439.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Débora Bubach
    • 1
  • Leandro Dufou
    • 2
  • Soledad Perez Catán
    • 1
  1. 1.Laboratorio de Análisis por Activación NeutrónicaCentro Atómico Bariloche, CNEABarilocheArgentina
  2. 2.Grupo de Separación Isotópica, Complejo Tecnológico PilcanilyeuCentro Atómico Bariloche, CNEABarilocheArgentina

Personalised recommendations