Advertisement

Environmental Monitoring and Assessment

, Volume 186, Issue 8, pp 4881–4887 | Cite as

Persistence and dissipation of flubendiamide and its risk assessment on gherkin (Cucumis anguria L.)

  • M. Paramasivam
  • C. Selvi
  • S. Chandrasekaran
Article

Abstract

A supervised open field trial was conducted to evaluate the dissipation pattern and risk assessment of flubendiamide in gherkin fruits following foliar application of Fame 480 SC at 60 and 120 g a.i. ha−1. Samples of gherkin fruits were drawn at different time intervals and quantified by HPLC-DAD. The maximum initial deposits of flubendiamide on gherkin were found to be 0.79 and 1.52 mg kg−1, respectively, at recommended and double the recommended doses. The dissipation pattern of flubendiamide followed a first-order kinetics with half-lives of 1.87 to 2.16 days at 60 and 120 g a.i. ha−1, respectively. The limit of quantification of flubendiamide and desiodo flubendiamide was observed to be 0.01 mg kg−1 for gherkin fruit and soil substrates. Theoretical maximum residue contribution (TMRC) for flubendiamide was calculated and found to be well below the maximum permissible intake (MPI) on gherkin fruits. Thus, the application of flubendiamide at the recommended dose on gherkin fruits presents no human health risks and safe to consumers.

Keywords

Flubendiamide Gherkin Half-life HPLC-DAD 

Notes

Acknowledgments

The authors are thankful to M/s Bayer CropScience for providing financial support to carry out the study.

References

  1. Anastassiades, M., Lehotay, S. J., Stajnbaher, D., & Schenck, F. J. (2003). Fast and easy multiresidue method employing acetonitrile extraction/partitioning and “dispersive solid-phase extraction” for the determination of pesticide residues in produce. Journal of AOAC International, 86, 412–431.Google Scholar
  2. Anonymous (1999). Dietary guidelines for the Indians. Indian Council of Medical Research.Google Scholar
  3. Anonymous (2010). Reasoned opinion on the modification of existing MRLs for flubendiamide in cucurbits with edible peel, cucurbits with inedible peel, aubergines and beans prepared by EFSA pesticide risk assessment peer review (PRAPeR) unit. EFSA Journal, 8, 1527.Google Scholar
  4. Chawla, S., Patel, A. R., Patel, H. K., & Shah, P. G. (2011). Dissipation of flubendiamide in/on Brinjal (Solanum melongena) fruits. Environmental Monitoring and Assessment, 183, 1–4.CrossRefGoogle Scholar
  5. Das, S. K., Mukherjee, I., & Das, S. K. (2012). Dissipation of flubendiamide in/on okra [Abelmoschus esculenta (L.) Moench] fruits. Bulletin of Environmental Contamination and Toxicology, 88, 381–384.CrossRefGoogle Scholar
  6. Ebbinghaus-Kintscher, U., Lümmen, P., Raming, K., Masaki, T., & Yasokawa, N. (2007). Flubendiamide, the first insecticide with a novel mode of action on insect ryanodine receptors. Pflanzenschutz-Nachrichten Bayer, 60, 117–140.Google Scholar
  7. European Commission, (2010). Guidance document on pesticide residue analytical methods. Document No. SANCO/825/00/rev. 8.1/16/11/2010. http://ec.europa.eu/food/plant/ protection/resources/guide_doc_825-00_rev7_en.pdf. Accessed 7 August 2013.
  8. Kale, V. D., Walunj, A. R., Battu, R. S., Sahoo, S. K., Singh, B., Paramasivam, M., Roy, S., Banerjee, T., Banerjee, H., Rao, C. S., Reddy, D. J., Reddy, K. N., Reddy, C. N., Tripathy, V., Jaya, M., Pant, S., Gupta, M., Singh, G., & Sharma, K. K. (2012). Assessment of flubendiamide residues in pigeon pea in different agro-climatic zones of India. Environmental Monitoring and Assessment, 184(7), 4267–4270.CrossRefGoogle Scholar
  9. Masaki, T., Yasokawa, N., Tohnishi, M., Nishimatsu, T., Tsubata, K., Inoue, K., Motoba, K., & Hirooka, T. (2006). Flubendiamide, a novel Ca2+ channel modulator, reveals evidence for functional cooperation between Ca2+ pumps and Ca2+ release. Molecular Pharmacology, 69, 1733–1739.CrossRefGoogle Scholar
  10. Mohapatra, S., Ahuja, A. K., Deepa, M., Sharma, D., Jagadish, G. K., & Rashmi, N. (2010). Persistence and dissipation of flubendiamide and des-iodo flubendiamide in cabbage (Brassica oleracea Linne) and soil. Bulletin of Environmental Contamination and Toxicology, 85, 352–356.CrossRefGoogle Scholar
  11. Mohapatra, S., Ahuja, A. K., Deepa, M., Jagadish, G. K., Rashmi, N., & Sharma, D. (2011). Development of an analytical method for analysis of flubendiamide, desiodo flubendiamide and study of their residue persistence in tomato and soil. Journal of Environmental Science and Health, Part B: Pesticides, Food Contaminants, and Agricultural Wastes, 46, 264–271.CrossRefGoogle Scholar
  12. Mukherjee, I., & Gopal, M. (2000). Environmental behavior and translocation of imidacloprid in eggplant, cabbage and mustard. Pest Management Science, 56, 932–936.CrossRefGoogle Scholar
  13. Paramasivam, M., & Banerjee, H. (2012). Persistence and dissipation of the insecticide flubendiamide and its metabolite desiodo flubendiamide residues in tomato fruit and soil. Bulletin of Environmental Contamination and Toxicology, 88, 344–348.CrossRefGoogle Scholar
  14. Paramasivam, M., & Banerjee, H. (2013). Dissipation of flubendiamide residues in/on cabbage (Brassica oleracea L.). Environmental Monitoring and Assessment, 185, 577–1581.CrossRefGoogle Scholar
  15. Paramasivam, M., & Chandrasekaran, S. (2013). Dynamics and residues of mixed formulation of fenamidone and mancozeb in gherkin field ecosystem. Ecotoxicology and Environmental Safety, 98, 292–296.CrossRefGoogle Scholar
  16. Resende, G. M. (1998). Influence of planting dates on Indian gherkin cultivar’s yield. Horticultura Brasileira, 16, 167–171.Google Scholar
  17. Sahoo, S. K., Sharma, R. K., Battu, R. S., & Singh, B. (2009). Dissipation kinetics of flubendiamide on chili and soil. Bulletin of Environmental Contamination and Toxicology, 83(3), 384–387.CrossRefGoogle Scholar
  18. Singh, G., Sahoo, S. K., Takkar, R., Battu, R. S., Singh, B., & Chahil, G. S. (2011). Residual behaviour and risk assessment of flubendiamide on chickpea (Cicer arietinum L.). Chemosphere, 84, 1416–1421.CrossRefGoogle Scholar
  19. Takkar, R., Sahoo, S. K., Singh, G., Battu, R. S., & Singh, B. (2012). Dissipation pattern of flubendiamide in/on brinjal (Solanum melongena L.). Environmental Monitoring and Assessment, 184, 5077–5083.CrossRefGoogle Scholar
  20. Tohnishi, M., Nakao, H., Furuya, T., Seo, A., Kodama, H., Tsubata, K., Fujioka, S., Kodama, H., Hirooka, T., & Nishimatsu, T. (2005). Flubendiamide, a novel insecticide highly active against lepidopterous insect pests. Journal of Pesticide Science, 30, 354–360.CrossRefGoogle Scholar
  21. Tsubata, K., Tohnishi, M., Kodama, H., & Seo, A. (2007). Chemistry of flubendiamide—discovery, synthesis, and X-ray structure. Pflanzenschutz-Nachrichten Bayer, 60, 105–116.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Pesticide Toxicology Laboratory, Department of Agricultural EntomologyTamil Nadu Agricultural UniversityCoimbatoreIndia

Personalised recommendations