Environmental Monitoring and Assessment

, Volume 186, Issue 5, pp 2925–2940 | Cite as

Geochemical characterization and biomonitoring of reclaimed soils in the Po River Delta (Northern Italy): implications for the agricultural activities

  • Dario Di Giuseppe
  • Gianluca Bianchini
  • Livia Vittori Antisari
  • Annalisa Martucci
  • Claudio Natali
  • Luigi Beccaluva


This geochemical study is focused on the easternmost part of the Po River alluvial plain in Northern Italy, which is interested by widespread agricultural activities, investigating a reclaimed sector of the Province of Ferrara, known as “Valle del Mezzano” (Mezzano Low Land, hereafter reported as MLL) characterized by peat-rich soils. The chemical–mineralogical characterization of these reclaimed soils is important to compare the local geochemical backgrounds with those recorded in other sectors of the River Po plain and to monitor if the observed concentration exceeds critical thresholds. The reported analyses include (a) measurement of the soil salinity, (b) nutrient evaluation, (c) major and trace element concentrations carried out on bulk soils, (d) tests of metal extraction with both aqua regia and EDTA to highlight the distinct elemental mobility and (e) phyto-toxicological measurement of heavy metal concentrations in plants (Lactuca sativa acephala) grown on the studied soils. The results indicate (1) high soil salinity, often with drastic increase of sodium and chloride along the soil profiles, (2) high nitrogen content (in part related to anthropogenic activities) on superficial horizons and nitrate decrease along the soil profiles and (3) comparative enrichments in heavy metals with respect to other soils of the province, which indicate that peat deposits are effective in trapping metals from anthropogenic sources. This, in turn, implies potential geochemical risks for the agricultural activities. In this regard, specific concerns are related to the high nickel and arsenic content of MLL soils due to the mobility of these elements and their attitude to be taken up by plants.


Reclaimed soils Po River Delta Soil salinity Nitrate Heavy metals Bioavailability 



The authors thank Dr. R. Tassinari for the analytical support and the referees and editors for their constructive comments that helped to improve earlier versions of the manuscript. Moreover, the first Author acknowledges that this research has been developed within the framework of the European LIFE +2010 project ‘‘ZeoLIFE “ (project code: LIFE+10 ENV/IT/000321;, and is grateful to the EC for the received funding.

Supplementary material

10661_2013_3590_MOESM1_ESM.pdf (356 kb)
ESM 1 (PDF 356 kb)
10661_2013_3590_MOESM2_ESM.pdf (1.1 mb)
ESM 2 (PDF 1167 kb)


  1. Abu-Zeid, N., Bianchini, G., Santarato, G., & Vaccaro, C. (2004). Geochemical characterisation and geophysical mapping of landfill leachates: the Marozzo canal case study (NE Italy). Environ Geol, 45, 439–447.CrossRefGoogle Scholar
  2. Alvarez, J. M., Lopez-Valdivia, L. M., Novillo, J., Obrador, A., & Rico, M. I. (2006). Comparison of EDTA and sequential extraction tests for phytoavailability prediction of manganese and zinc in agricultural alkaline soils. Geoderma, 132, 450–463.CrossRefGoogle Scholar
  3. Amorosi, A., Centineo, M. C., Dinelli, E., Lucchini, F., & Tateo, F. (2002). Geochemical and mineralogical variations as indicators of provenance changes in Late Quaternary deposits of SE Po Plain. Sedimentary Geology, 151, 273–292.CrossRefGoogle Scholar
  4. Ayodele, J.T. & Mohammed, S.S. (2011). Speciation of nickel in soils and cereals.Research Journal of Applied Sciences Google Scholar
  5. Barbafieri, M., Lubrano, L., & Petruzzelli, G. (1996). Characterization of pollution in sites contaminated by heavy metals: a proposal. Ann Chim, 86, 585–594.Google Scholar
  6. Beck, M., Böning, P., Schückel, U., Stiehl, T., Schnetger, B., Rullkötter, J., & Brumsack, H. J. (2013). Consistent assessment of trace metal contamination in surface sediments and suspended particulate matter: a case study from the Jade Bay in NW Germany. Mar Pollut Bull, 70, 100–111.CrossRefGoogle Scholar
  7. Bernard, A. (2008). Cadmium & its adverse effects on human health. Indian J Med Res, 128, 557–564.Google Scholar
  8. Bianchini, G., Laviano, R., Lovo, S., & Vaccaro, C. (2002). Chemical–mineralogical characterisation of clay sediments around Ferrara (Italy): a tool for an environmental analysis. Applied Clay Science, 21, 165–176.CrossRefGoogle Scholar
  9. Bianchini, G., Marrocchino, E., & Vaccaro, C. (2004). Chemical and mineralogical characterisation of historic mortars in Ferrrara (NE Italy). Cement and Concrete Research, 34, 1471–1475.CrossRefGoogle Scholar
  10. Bianchini, G., Marrocchino, E., Moretti, A., & Vaccaro, C. (2006). Chemical–mineralogical characterisation of historical bricks from Ferrara: an integrated bulk and micro analytical approach. Geological Society of London Special Publication, 257, 127–139.CrossRefGoogle Scholar
  11. Bianchini, G., Natali, C., Di Giuseppe, D., & Beccaluva, L. (2012). Heavy metals in soils and sedimentary deposits of the Padanian Plain (Ferrara, Northern Italy): characterisation and biomonitoring. Journal of Soils and Sediments, 12, 1145–1153.CrossRefGoogle Scholar
  12. Bianchini, G., Di Giuseppe, D., Natali, C., & Beccaluva, L. (2013). Ophiolite inheritance in the Po plain sediments: insights on heavy metals distribution and risk assessment. Ofioliti. 38, 1–14.Google Scholar
  13. Bonifacio, E., Falsone, G., & Piazza, S. (2010). Linking Ni and Cr concentrations to soil mineralogy: does it help to assess metal contamination when the natural background is high? Journal of Soils and Sediments, 10, 1475–1486.CrossRefGoogle Scholar
  14. Castaldelli, G., Colombani, N., Vincenzi, F., & Mastrocicco, M. (2013). Linking dissolved organic carbon, acetate and denitrification in agricultural soils. Environmental Earth Sciences, 68, 939–945.CrossRefGoogle Scholar
  15. Cearreta, A., García-Artola, A., Leorri, E., Irabien, M. J., & Masque, P. (2013). Recent environmental evolution of regenerated salt marshes in the southern Bay of Biscay: anthropogenic evidences in their sedimentary record. J Mar Syst, 109–110, 203–212.CrossRefGoogle Scholar
  16. Coggins, A. M., Jennings, S. G., & Ebinghaus, R. (2006). Accumulation rates of the heavy metals lead, mercury and cadmium in ombrotrophic peatlands in the west of Ireland. Atmos Environ, 40, 260–278.CrossRefGoogle Scholar
  17. Davis, J. C. (1986). Statistics and data analysis in geology (2nd ed.). New York: Wiley.Google Scholar
  18. De Vleeschouwer, F., Gérard, L., Goormaghtigh, C., Mattielli, N., Le Roux, G., & Fagel, N. (2007). Atmospheric lead and heavy metal pollution records from a Belgian peat bog spanning the last two millenia: human impact on a regional to global scale. Science of the Total Environment, 377, 282–295.CrossRefGoogle Scholar
  19. Demirezen, D., & Askoy, A. (2006). Heavy metal levels in vegetables in Turkey are within safe limits for Cu, Zn, Ni, and exceeded for Cd and Pb. Journal of Food Quality, 29, 252–265.CrossRefGoogle Scholar
  20. Di Giuseppe, D. (2011). Distribuzione dei metalli pesanti nei suoli agricoli ferraresi: analisi geochimica e cartografia tematica su base GIS. Ph.D. thesis, University of Ferrara.Google Scholar
  21. Facchinelli, A., Sacchi, E., & Mallen, L. (2001). Multivariate statistical and GIS approach to identify heavy metal sources in soils. Environ Pollut, 114, 313–324.CrossRefGoogle Scholar
  22. Feng, M. H., Shan, X. Q., Zhang, S., & Wen, B. (2005). A comparison of the rhizosphere-based method with DTPA, EDTA, CaCl2, and NaNO3 extraction methods for prediction of bioavailability of metals in soil to barley. Environ Pollut, 137, 231–240.CrossRefGoogle Scholar
  23. Gupta, A. K., & Sinha, S. (2007). Assessment of single extraction methods for the prediction of bioavailability of metals to Brassica juncea L. Czern. (var. Vaibhav) grown on tannery waste contaminated soil. J Hazard Mater, 149, 144–150.CrossRefGoogle Scholar
  24. Hermanescu, M., Alda, L. M., Bordean, D. M., Gogoasa, I., & Gergen, I. (2011). Heavy metals health risk assessment for population via consumption of vegetables grown in old mining area; a case study: Banat County, Romania. Chemistry Central Journal, 5, 64.CrossRefGoogle Scholar
  25. ISO (International Organization for Standardization) 17402 (2008). Soil quality—requirements and guidance for the selection and application of methods for the assessment of bioavailability of contaminants in soil and soil materials.Google Scholar
  26. IUSS (International Union of Soil Sciences) Working Group WRB (2007). World reference base for soil resources 2006, first update 2007. World Soil Resources Reports No. 103, FAO, Rome.Google Scholar
  27. Kapaj, S., Peterson, H., Liber, K., Prosun, & Bhattacharya, P. (2006). Human health effects from chronic arsenic poisoning—a review. Journal of Environmental Science and Health Part A, 41, 1399–2428.CrossRefGoogle Scholar
  28. Kierczak, J., Neel, C., Bril, H., & Puziewicz, J. (2007). Effect of mineralogy and pedoclimatic variations on Ni and Cr distribution in serpentine soils under temperate climate. Geoderma, 142, 165–177.CrossRefGoogle Scholar
  29. King, J., Gay, A., Sylvester-Bradley, R., Bingham, I., Foulkes, J., Gregory, P., & Robinson, D. (2003). Modelling cereal root systems for water and nitrogen capture: towards an economic optimum. Ann Bot, 91, 383–390.CrossRefGoogle Scholar
  30. Kloke, A. (1993). Orientierungsdaten fur tolerierbare Gesamtgehalteeiniger Elemente in Kulturboden. In D. Rosenkranz, G. Einsele, & H. Harreß (Eds.), Bodenschutz. Berlin: Schmidt.Google Scholar
  31. Lakanen, E., & Ervio, R. (1971). A comparison of eight extractants for the determination of plant available micronutrients in soils. ActaAgraliaFennica, 123, 223–232.Google Scholar
  32. Liu, X., Song, Q., Tang, Y., Li, W., Xu, J., Wu, J., Wang, F., & Brookes, P. C. (2013). Human health risk assessment of heavy metals in soil-vegetable system: a multi-medium analysis. Science of Total Environment, 463–464, 530–540.CrossRefGoogle Scholar
  33. Lv, H.-P., Lin, Z., Tan, J.-F., & Guo, L. (2013). Contents of fluoride, lead, copper chromium, arsenic and cadmium in Chinese Pe-erh tea. Food Res Int, 53, 938–944.CrossRefGoogle Scholar
  34. Manouchehri, N., Besancon, S., & Bermond, A. (2006). Major and trace metal extraction from soil by EDTA: equilibrium and kinetic studies. Anal Chim Acta, 559, 105–112.CrossRefGoogle Scholar
  35. Micó, C., Peris, M., Sánchez, J., & Recatalá, L. (2006). Heavy metal content of agricultural soils in a Mediterranean semiarid area: the Segura River Valley (Alicante, Spain). Spanish Journal of Agricultural Research, 4, 363–372.CrossRefGoogle Scholar
  36. Minnini, G., & Sartori, M. (1987). Problems and perspectives of sludge utilization in agriculture. Agriculture, Ecosystems& Environment, 18, 291–311.CrossRefGoogle Scholar
  37. Miola, A., Bondesan, A., Corain, L., Favaretto, S., Mozzi, P., Piovan, S., & Sostizzo, I. (2006). Wetlands in the Venetian Po Plain (northeastern Italy) during the Last Glacial Maximum: interplay between vegetation, hydrology and sedimentary environment. Review of Palaeobotany and Palynology, 141, 53–81.CrossRefGoogle Scholar
  38. Molinari, A., Guadagnini, L., Marcaccio, M., Straface, S., Sanchez-Vila, X., & Guadagnini, A. (2013). Arsenic release from deep natural solid matrices under experimental controlled redox conditions. Science of the Total Environment, 444, 231–240.CrossRefGoogle Scholar
  39. Morselli, L., Olivieri, P., Brusori, B., & Passarini, F. (2003). Soluble and insoluble fractions of heavy metals in wet and dry atmospheric depositions in Bologna, Italy. Environ Pollut, 124, 457–469.CrossRefGoogle Scholar
  40. Nelson, D. W., & Sommers, L. E. (1996). Total carbon, organic carbon, and organic matter. In A. L. Page et al. (Eds.), Methods of soil analysis, part 2, 2nd edn. Agronomy. 9: 961–1010. Madison, WI: Am. Soc. of Agron., Inc.Google Scholar
  41. Page, A. L., Chang, A. C., & El-Amamy, M. (1987). Cadmium levels in soils and crops in the United States. In T. C. Hutchinson & K. M. Meema (Eds.), Lead, mercury, cadmium and arsenic in the environment (pp. 119–143). Chichester: Wiley.Google Scholar
  42. Pennisi, M., Bianchini, G., Klomg/kgann, W., & Muti, A. (2009). Chemical and isotopic (B, Sr) composition of alluvial sediments as archive of a past hydrothermal outflow. Chemical Geology, 266, 114–125.CrossRefGoogle Scholar
  43. Pérez, J. I., Hontoria, E., Zamorano, M., & Gόmez, M. A. (2005). Wastewater treatment using fibrist and saprist peat: a comparative study. Journal of Environmental Science and Health, Part A, 40, 1021–1032.CrossRefGoogle Scholar
  44. Plante, A. F., Pernes, M., & Chenu, C. (2005). Changes in clay-associated organic matter quality in a C depletion sequence as measured by differential thermal analyses. Geoderma, 129, 186–199.CrossRefGoogle Scholar
  45. Poggio, L., Vrščaj, B., Schulin, R., Hepperle, E., & Marsan, F. A. (2009). Metals pollution and human bioaccessibility of top soils in Grugliasco (Italy). Environ Pollut, 157, 680–689.CrossRefGoogle Scholar
  46. Poulik, Z. (1997). The danger of cumulation of nickel in cereals on contaminated soils. Agr Ecosyst Environ, 63, 25–59.CrossRefGoogle Scholar
  47. Rivett, M. O., Buss, S. R., Morgan, P., Smith, J. W. N., & Bemment, C. D. (2008). Nitrate attenuation in groundwater: a review of biogeochemical controlling processes. Water Res, 42, 4215–4232.CrossRefGoogle Scholar
  48. Shotyk, W. (1996). Peat bog archives of atmospheric metal deposition: geochemical evaluation of peat profiles, natural variations in metal concentrations, and metal enrichment factors. Environmental Reviews, 4, 149–183.CrossRefGoogle Scholar
  49. Shotyk, W., Weiss, D., Appleby, P. G., Cheburkin, A. K., Frei, R., Gloor, M., Kramers, J. D., Reese, S., & van der Knaap, W. O. (1998). History of atmospheric lead deposition since 12,370 14C yr BP from a peat bog, Jura Mountains, Switzerland. Science, 281, 1635–1640.CrossRefGoogle Scholar
  50. Simeoni, U., & Corbau, C. (2009). A review of the Delta Po evolution (Italy) related to climatic changes and human impacts. Geophys J Roy Astron Soc, 107, 64–71.Google Scholar
  51. SSS, Soil Survey Staff. (2006). Key to soil taxonomy (10th ed.). Washington DC, USA: United States Department of Agriculture (USDA)—Natural Resources Conservation Service (NRCS).Google Scholar
  52. Stefani, M., & Vincenzi, S. (2005). The interplay of eustasy, climate and human activity in the late Quaternary depositional evolution and sedimentary architecture of the Po Delta system. Mar Geol, 222–223, 19–48.CrossRefGoogle Scholar
  53. Syrovetnik, K., Malmström, M. E., & Neretnieks, I. (2007). Accumulation of heavy metals in the Oostriku peat bog, Estonia: determination of binding processes by means of sequential leaching. EnvironmentalPollution, 147, 291–300.Google Scholar
  54. Tabaldi, G. (2002). FAO report, survey on irrigationmodernization, Bacino del Mezzano (Emilia Romagna, Provincia di Ferrara, Delta del Po), 1–12. Accessed 10 June 2013.
  55. Twardowska, I., & Kyziol, J. (2003). Sorption of metals onto natural organic matter as a function of complexation and adsorbent–adsorbate contact mode. Environ Int, 28, 783–792.CrossRefGoogle Scholar
  56. Ungaro, F., Ragazzi, F., Cappelin, R., & Giandon, P. (2008). Arsenic concentration in the soils of the Brenta Plain (Northern Italy): mapping the probability of exceeding contamination thresholds. J Geochem Explor, 96, 117–131.CrossRefGoogle Scholar
  57. Ure, A. M. (1996). Single extraction schemes for soil analysis and related applications. Science of the Total Environment, 178, 3–10.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Dario Di Giuseppe
    • 1
  • Gianluca Bianchini
    • 1
    • 2
  • Livia Vittori Antisari
    • 3
  • Annalisa Martucci
    • 1
  • Claudio Natali
    • 1
    • 2
  • Luigi Beccaluva
    • 1
  1. 1.Dipartimento di Fisica e Scienze della TerraUniversità di FerraraFerraraItaly
  2. 2.Istituto di Geoscienze e GeorisorseC.N.RPisaItaly
  3. 3.Dipartimento di Scienze Agrarie, Alma Mater StudiorumUniversità di BolognaBolognaItaly

Personalised recommendations