Environmental Monitoring and Assessment

, Volume 186, Issue 5, pp 2823–2834 | Cite as

CH4 continuous measurements in the upper Spanish plateau

  • M. Luisa Sánchez
  • M. Ángeles García
  • Isidro A. Pérez
  • Nuria Pardo


Continuous methane, CH4, concentrations were measured in a rural area of the upper Spanish plateau from June 2010 to May 2012 by cavity ring-down spectroscopy technique. The results obtained have proven the local impact of anthropogenic nearby sources on CH4 concentrations, and evidence a significant influence on the overall mean, averaged daily and seasonal patterns recorded at the measuring site. The positive anomalies in CH4 concentrations, statistically significant at 95 %, in the southeast sector, defined here as ESE, SE, SSE and S sectors, have been attributed to the contribution of the Valladolid urban plume and the urban landfill. Based on this finding, CH4 background levels were associated to the concentrations recorded in the remaining un-disturbed sectors. CH4 means of the overall data set, the southeast sector and background sectors yielded average means of 1,894.1, 1,927.9 and 1,887.1 ppb, respectively. The diurnal and seasonal patterns of the overall data set and background concentrations have shown that CH4 concentrations are mainly dominated by its reaction with OH radicals. Maximum hourly concentrations were reached during night-time and early morning, 5–7 h, whereas minimum concentrations were recorded at 16 h. Maximum and minimum monthly means were recorded in January and July, respectively. The diurnal and seasonal amplitudes, namely, peak-to-peak means, of background concentrations were 25.1 and 48.1 ppb, respectively. These values were significantly lower than those obtained for the overall data set, 42.9 and 58.1 ppb, revealing the significant role of local influences on CH4 concentrations despite the low frequency of southeast winds recorded at the measuring site, 16.9 %.


Methane concentrations Background levels Climate change Diurnal and seasonal cycles Influence of anthropogenic sources 



This paper has been supported by the Ministry of Economy and Competitiveness and ERDF funds under Projects CGL 2010-09632-E and CGL-2009-11979, to whom the authors express their gratitude.


  1. Alvalá, P. C., Boian, C., & Kirchhoff, V. W. J. (2004). Measurements of CH4 and CO during ship cruises in the South Atlantic. Atmospheric Environment, 38, 4583–4588.CrossRefGoogle Scholar
  2. Artuso, F., Chamard, P., Piacentino, S., di Sarra, A., Meloni, D., Monteleone, F., et al. (2007). Atmospheric methane in the Mediterranean: analysis of measurements at the island of Lampedusa during 1995–2005. Atmospheric Environment, 41, 3877–3888.CrossRefGoogle Scholar
  3. Baldocchi, D., Detto, M., Sonnentag, O., Verfaillie, J., The, Y. A., Silver, W., et al. (2012). The challenges of measuring methane fluxes and concentrations over a peatland pasture. Agricultural and Forest Meteorology, 153, 177–187.CrossRefGoogle Scholar
  4. Balzani, L., Henne, J. M., Legreid, S. G., Staehelin, J., Reimann, S., Prévôt, A. S. H., et al. (2008). Estimation of background concentrations of trace gases at the Swiss Alpine site Jungfraujoch (3580 m asl). Journal of Geophysical Research, 113, D22305. doi: 10.1029/2007JD009751.CrossRefGoogle Scholar
  5. Belikov, B., Brenninkmeijer, C. A. M., Elansky, N. F., & Ral’ko, A. A. (2006). Methane, carbon monoxide, and carbon dioxide concentrations measured in the atmospheric surface layer over continental Russia in the TROICA Experiments. Izvestiya Atmospheric Oceanic Physics, 42, 46–59.CrossRefGoogle Scholar
  6. Bousquet, P., Ciais, P., Miller, J. B., Dlugokencky, E. J., Hauglustaine, D. A., Prigent, C., et al. (2006). Contribution of anthropogenic and natural sources to atmospheric methane variability. Nature, 443, 439–443.CrossRefGoogle Scholar
  7. Bousquet, P., Ringeval, B., Pison, I., Dlugokencky, E. J., Brunke, E. G., Carouge, C., et al. (2010). Source attribution of the changes in atmospheric methane for 2006–2008. Atmospheric Chemistry and Physics, 11, 3689–3700.CrossRefGoogle Scholar
  8. Butchwitz, M., de Beek, R., Nöelm, S., Burrowsm, J. P., Bovensmann, H., Bremer, H., et al. (2005). Carbon monoxide, methane and carbon dioxide columns retrieved from SCIAMACHY by WFM-DOAS: year 2003 initial data set. Atmospheric Chemistry and Physics, Discussion, 5, 1943–1971.CrossRefGoogle Scholar
  9. Conrad, R. (2009). The global methane cycle: recent advances in understanding the microbial processes involved. Environmental Microbiology Reports, 1(5), 285–292.CrossRefGoogle Scholar
  10. Crosson, E. R. (2007). A field- deployable, high accuracy atmospheric multi-gas monitor based on cavity ring-down spectroscopy. Symposium on Air Quality Measurement Methods and Technology. Air Waste Manage. Assoc., San Francisco, CA.Google Scholar
  11. Crosson, E. R. (2008). A cavity ring-down analyzer for measuring atmospheric levels of methane, carbon dioxide and water vapour. Applied Physics B, 92, 403–408.CrossRefGoogle Scholar
  12. Dlugokencky, E. J., Masarie, K. A., Tans, P. P., Conway, T. J., & Xiongs, X. (1997). Is the amplitude of the methane seasonal cycle changing? Atmospheric Environment, 31, 21–26.CrossRefGoogle Scholar
  13. Dlugokencky, E. J., Bruhwiler, L. M. P., White, J. W. C., Emmons, L. K., Novelli, P. C., Montzka, S. A., et al. (2009). Observational constraints on recent increases in the atmospheric CH4 burden. Geophysical Research Letters, 36, L18803. doi: 10.1029/2009GL039780.CrossRefGoogle Scholar
  14. Forster, P., Ramaswamy, V., Artaxo, P., Berntsen, T., Betts, R., Fahey, D. W., et al. (2007). Changes in Atmospheric Constituents and in Radiative Forcing. In S. Solomon et al. (Eds.), Climate Change 2007: The Physical Science Basis. Cambridge: Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press.Google Scholar
  15. García, M. A., Sánchez, M. L., Pérez, I. A., & de Torre, B. (2008). Continuous carbon dioxide measurements in a rural area in the upper Spanish plateau. Journal of the Air & Waste Management Association, 58, 940–946.CrossRefGoogle Scholar
  16. García, M. A., Sánchez, M. L., & Pérez, I. (2012). Differences between carbon dioxide levels over suburban and rural sites in Northern Spain. Environmental Science and Pollution Research, 19, 432–439.CrossRefGoogle Scholar
  17. Gerilowski, K. (2011). Interactive comment on “Eddy covariance flux measurements confirm extreme CH4 emissions from a Swiss hydropower reservoir and resolve their short-term variability” by W. Eugster et al. Biogeosciences Discuss, 8, C1834–C1835.Google Scholar
  18. GLOBALVIEW-CH4 (2009). Cooperative Atmospheric Data Integration Project - Methane. CD-ROM, NOAA ESRL, Boulder, Colorado [Also available on Internet via anonymous FTP to, Path: ccg/ch4/GLOBALVIEW]Google Scholar
  19. Gómez-Pelaez, A. J., Ramos, R., Cuevas, E., & Gomez-Trueba, V. (2010). 25 years of Continuous CO2 and CH4 measurements at Izaña Global GAW mountain station: annual cycles and interannual trends. Proceedings of the “Symposium on Atmospheric Chemistry and Physics at Mountain Sites”, Interlaken, Switzerland: 157–159.Google Scholar
  20. Howarth, R. W., Santoro, R., & Ingraffea, A. (2011). Methane and the greenhouse-gas footprint of natural gas from shale formations. Climatic Change. doi: 10.1007/s10584-011-0061-5.Google Scholar
  21. IPCC. (2001). Climate Change 2001: The Scientific Basis. In J. H. Houghton, Y. Ding, D. J. Griggs, M. Noguer, P. J. Van der Linden, X. Dai, K. Maskell, & C. A. Johnson (Eds.), Cambridge University Press. New York: USA.Google Scholar
  22. IPCC (2007). Summary for Policymakers, in Solomon, S. et al. (Eds), Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.Google Scholar
  23. Khalil, M. A. K., & Rasmussen, R. A. (1994). Global emissions of methane during the last several centuries. Chemosphere, 29, 833–842.CrossRefGoogle Scholar
  24. Kong, S., Lu, B., Han, B., Bai, Z., Xu, Z., You, Y., et al. (2010). Seasonal variation analysis of atmospheric CH4, N2O and CO2 in Tianjin offshore area. Science China Earth Sciences, 53, 1205–1215.CrossRefGoogle Scholar
  25. Lelieveld, J. (2006). Climate change: a nasty surprise in the greenhouse. Nature, 443, 405–406.CrossRefGoogle Scholar
  26. Lelieveld, J., Crutzen, P. J., & Dentener, F. J. (1998). Changing concentration, lifetime and climate forcing of atmospheric methane. Tellus, B50, 128–150.CrossRefGoogle Scholar
  27. Meirink, J. F., Eskes, H. J., & Goede, A. P. H. (2005). Sensitivity analysis of methane emissions derived from SCIAMACHY observations through inverse modelling. Atmospheric Chemistry and Physics Discussion, 5, 9405–9445.CrossRefGoogle Scholar
  28. Mu, Z., Kimura, S. D., & Hatano, R. (2006). Estimation of global warming potencial from upland cropping systems in central Hokkaido, Japan. Soil Science and Plant Nutrition, 52, 371–377.CrossRefGoogle Scholar
  29. O’Connor, F. M., Boucher, O., Gedney, N., Jones, C-D., Folberth, G.A. Coppell, R. et al. (2010). Possible role of wetlands, permafrost, and methane hydrates in the methane cycle under future climate change: a review. Reviews of Geophysics, 48, RG4005, 33 pp, doi: 10.1029/2010RG000326
  30. Padhy, P. K., & Varshney, C. K. (2000). Ambient methane levels in Delhi. Chemosphere-Global Change Science, 2, 185–190.CrossRefGoogle Scholar
  31. Patra, P. K., Takigawa, M., & Ishijima, K. (2009). Growth rate, seasonal, synoptic, diurnal variations and budget of methane in the lower atmosphere. Journal of the Meteorology Society of Japan, 87, 635–663.CrossRefGoogle Scholar
  32. Pérez, I. A., García, M. A., Sánchez, M. L., & de Torre, B. (2008). Description of atmospheric variables measured with a RASS sodar: cycles and distribution functions. Journal of Wind Engineering & Industrial Aerodynamics, 96, 436–453.CrossRefGoogle Scholar
  33. Pérez, I. A., Sánchez, M. L., García, M. A., & de Torre, B. (2009a). CO2 transport by urban plume in the upper Spanish plateau. Science of the Total Environment, 407, 4934–4938.CrossRefGoogle Scholar
  34. Pérez, I. A., Sánchez, M. L., García, M. A., & de Torre, B. (2009b). Daily and annual cycle of CO2 concentration near the surface depending on boundary layer structure at a rural site in Spain. Theoretical and Applied Climatology, 98, 269–277.CrossRefGoogle Scholar
  35. Rella, C. H. (2010). Accurate Greenhouse Gas Measurements in Humid Gas Streams Using the Picarro G1301 Carbon Dioxide/Methane/Water Vapor Gas Analyzer, Sunnyvale, CA.Google Scholar
  36. Rigby, M., Prinn, R. G., Fraser, P. J., Simmonds, P. G., Langenfelds, R. L., Huang, J., et al. (2008). Renewed growth of atmospheric methane. Geophysical Research Letters, 35, L22805. doi: 10.1029/2008GL036037.CrossRefGoogle Scholar
  37. Ringeval, B., Noblet-Ducoudré, N., Ciais, P., Bousquet, P., Prigent, C., Papa, F., & Rossow, W.B. (2010). An attempt to quantify the impact of changes in wetland extent on methane emissions on the seasonal and interannual time scales. Global Biogeochemical Cycles, 24, GB2003, 12 pp.Google Scholar
  38. Sánchez, M. L., García, M. A., Pérez, I. A., & de Torre, B. (2008). Evaluation of surface ozone measurements during 20002005 at a rural area in the upper Spanish plateau. Journal of Atmospheric Chemistry, 60, 137–152.CrossRefGoogle Scholar
  39. Sánchez, M. L., Pérez, I. A., & García, M. A. (2010). Study of CO2 variability at different temporal scales recorded in a rural Spanish site. Agricultural and Forest Meteorology, 150, 1168–1173.CrossRefGoogle Scholar
  40. Sasakawa, M., Shimoyama, K., Machida, T., Tsuda, N., Suto, H., Arshinov, M., et al. (2010). Continuous measurements of methane from a tower network over Siberia. Tellus, 62B, 403–416.CrossRefGoogle Scholar
  41. Topp, E., & Pattey, E. (1997). Soils as sources and sinks for atmospheric methane. Canadian Journal of Soil Science, 77, 167–178.CrossRefGoogle Scholar
  42. Veenhuysen, D., Vermeulen, A. T., Hofschreuder, P., & Van Den Bulk, W. C. M. (1998). Methane emission of the Amsterdam urban area. Water, Air, & Soil Pollution, 107, 321–333.CrossRefGoogle Scholar
  43. Villani, M. G., Bergamaschi, P., Krol, M., Meirink, J. F., & Dentener, F. (2010). Inverse modeling of European CH4 emissions: sensitivity to the observational network. Atmospheric Chemistry and Physics, 10, 1249–1267.CrossRefGoogle Scholar
  44. Wastine, B., Kaiser, C., Vuillemin, C., Lavric, J.V., Schmidt, M., Ramonet, M., McGovern, F., O'Brien, P., Dodd, D., O'Doherty, S., & Spain, G. (2009). Evaluation of the Picarro G1301 and deployment at three Irish sites. Conference Name: 15th WMO/IAEA Meeting of Experts on Carbon Dioxide, Other Greenhouse Gases, and Related Tracer Measurement Techniques.Google Scholar
  45. Whalen, M. (1993). The global methane cycle. Annual Review of Earth and Planetary Science, 21, 407–426.CrossRefGoogle Scholar
  46. WMO. (2011). Greenhouse Gas Bulletin. Geneva: World Meteorological Organization. November, 7.Google Scholar
  47. Worthy, D. E. J., Levin, I., Trivett, N. B. A., Kuhlmann, A. J., Hopper, J. F., & Ernst, M. K. (1998). Seven years of continuous methane observations at a remote boreal site in Ontario, Canada. Journal of Geophysical Research, 103, 15995–16007.CrossRefGoogle Scholar
  48. Wuebbles, D. J., & Hayhoe, K. (2000). Atmospheric Methane: Trends and Impacts, in: van Ham, J. et al. (Eds), Non-CO2 Greenhouse Gases: Scientific Understanding Control and Implementation, Kluwer Academic Publishers, the Netherlands: pp. 425–432.Google Scholar
  49. Wuebbles, D. J., & Hayhoe, K. (2002). Atmospheric methane and global change. Earth-Science Reviews, 57, 77–210.CrossRefGoogle Scholar
  50. Zhou, L., Tang, J., Wen, Y., Li, J., Yan, P., & Zhang, X. (2003). The impact of local winds and long-range transport on the continuous carbon dioxide record at Mount Waliguan, China. Tellus, 55B, 145–158.CrossRefGoogle Scholar
  51. Zhou, L. X., Worthy, D. E. J., Lang, P. M., Ernst, M. K., Zhang, X. C., Wen, Y. P., et al. (2004). Ten years of atmospheric methane observations at a high elevation site in Western China. Atmospheric Environment, 38, 7041–7054.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • M. Luisa Sánchez
    • 1
  • M. Ángeles García
    • 1
  • Isidro A. Pérez
    • 1
  • Nuria Pardo
    • 1
  1. 1.Department of Applied Physics, Faculty of SciencesUniversity of ValladolidValladolidSpain

Personalised recommendations