Environmental Monitoring and Assessment

, Volume 186, Issue 5, pp 2813–2821 | Cite as

Comprehensive screening and priority ranking of volatile organic compounds in Daliao River, China

  • Huilian Ma
  • Haijun Zhang
  • Longxing Wang
  • Jincheng Wang
  • Jiping Chen


An analytical strategy for comprehensive screening of target and non-target volatile organic compounds (VOCs) in surface water was developed, and it was applied to the analysis of VOCs in water samples from Daliao River. The target VOCs were quantified using purge and trap-gas chromatography-mass spectrometry (P&T-GC/MS). Among 20 water samples, 34 VOCs were detected at least once. For the screening of non-target VOCs, the double distillation apparatus was used for the pre-concentration of VOCs prior to P&T-GC/MS analysis. Subsequently, deconvolution software and NIST mass spectral library were applied for the identification of the non-target compounds. A total of 17 non-target VOCs were identified. The most frequently detected VOCs (detection frequencies >80 %) included toluene, benzene, naphthalene, 1,2-dichloroethane, 1,1,2-trichloroethane, and methyl tert-butyl ether. The distribution of VOCs obviously varied according to the sampling sites. The total concentrations of VOCs in water samples collected from the heavily industrialized cities (Anshan and Liaoyang) and the busy port city (Yingkou) were relatively high. The top ten priority VOCs, including naphthalene, 1,2-dichloroethane, o-xylene, 1,3-dichlorobenzene, tetrachloroethene, 1,2-dichlorobenzene, 1,2,4-trichlorobenzene, ethylbenzene, m-xylene, and p-xylene, were obtained by the ranking of the detected VOCs according to their occurrence and ecological effects. These compounds should be given more attention in monitoring and drainage control strategies.


VOCs Daliao River P&T-GC/MS Non-target screening Priority ranking 



The work was supported by grants from the National Natural Science Foundation of China (No. 21277139) and the National Basic Research Program (Grant No. 2009CB421602).

Supplementary material

10661_2013_3582_MOESM1_ESM.doc (473 kb)
ESM 1 (DOC 473 kb)


  1. Botta, D., Dancelli, E., & Mantica, E. (1996). A case history of contamination by polychloro-1,3-butadiene congeners. Environmental Science & Technology, 30(2), 453–462. doi: 10.1021/es9501575.CrossRefGoogle Scholar
  2. Chary, N. S., & Fernandez-Alba, A. R. (2012). Determination of volatile organic compounds in drinking and environmental waters. TrAC Trends in Analytical Chemistry, 32, 60–75. doi: 10.1016/j.trac.2011.08.011.CrossRefGoogle Scholar
  3. Chen, T., Williams, T. D., Mally, A., Hamberger, C., Mirbahai, L., Hickling, K., & Chipman, J. K. (2012). Gene expression and epigenetic changes by furan in rat liver. Toxicology, 292(2–3), 63–70. doi: 10.1016/j.tox.2011.10.020.CrossRefGoogle Scholar
  4. Deng, C.-B., Tian, Y., Li, X.-P., Jiang, J.-H., Liao, P.-D., & Liang, L.-L. (2010). Volatile organic compounds in Yongjiang River and inland surface waters of Nanning. Environmental Science & Technology, 22(1), 119–123 (in Chinese).Google Scholar
  5. Fatta, D., Michael, C., Canna-Michaehdou, S., Christodoulidou, M., Kythreotou, N., & Vasquez, M. (2007). Pesticides, volatile and semivolatile organic compounds in the inland surface waters of Cyprus. Desalination, 215(1–3), 223–236. doi: 10.1016/j.desal.2006.10.037.CrossRefGoogle Scholar
  6. Fenner-Crisp, P. A., Mayes, M. E., & David, R. M. (2011). Assessing the human carcinogenic potential of tetrahydrofuran: I. Mode of action and human relevance analysis of the male rat kidney tumor. Regulatory Toxicology and Pharmacology, 60(1), 20–39. doi: 10.1016/j.yrtph.2011.01.009.CrossRefGoogle Scholar
  7. GB 3838-2002. (2002). National environmental quality standards for surface water: Accessed 127926 October 122012.
  8. Glegg, G. A., & Rowland, S. J. (1996). The Braer oil spill — hydrocarbon concentrations in intertidal organisms. Marine Pollution Bulletin, 32(6), 486–492. doi: 10.1016/0025-326x(96)84965-4.CrossRefGoogle Scholar
  9. Golfinopoulos, S. K., Lekkas, T. D., & Nikolaou, A. D. (2001). Comparison of methods for determination of volatile organic compounds in drinking water. Chemosphere, 45(3), 275–284. doi: 10.1016/s0045-6535(00)00553-1.CrossRefGoogle Scholar
  10. Gomez, M. J., Gomez-Ramos, M. M., Aguera, A., Mezcua, M., Herrera, S., & Fernandez-Alba, A. R. (2009). A new gas chromatography/mass spectrometry method for the simultaneous analysis of target and non-target organic contaminants in waters. Journal of Chromatography A, 1216(18), 4071–4082. doi: 10.1016/j.chroma.2009.02.085.CrossRefGoogle Scholar
  11. Gomez, M. J., Gomez-Ramos, M. M., Malato, O., Mezcua, M., & Fernandez-Alba, A. R. (2010). Rapid automated screening, identification and quantification of organic micro-contaminants and their main transformation products in wastewater and river waters using liquid chromatography-quadrupole-time-of-flight mass spectrometry with an accurate-mass database. Journal of Chromatography A, 1217(45), 7038–7054. doi: 10.1016/j.chroma.2010.08.070.CrossRefGoogle Scholar
  12. Hernandez, F., Portoles, T., Pitarch, E., & Lopez, F. J. (2007). Target and nontarget screening of organic micropollutants in water by solid-phase microextraction combined with gas chromatography/high-resolution time-of-flight mass spectrometry. Analytical Chemistry, 79(24), 9494–9504. doi: 10.1021/ac071551b.CrossRefGoogle Scholar
  13. Huybrechts, T., Dewulf, J., Moerman, O., & Van Langenhove, H. (2000). Evaluation of purge-and-trap-high-resolution gas chromatography-mass spectrometry for the determination of 27 volatile organic compounds in marine water at the ng l(−1) concentration level. Journal of Chromatography A, 893(2), 367–382. doi: 10.1016/s0021-9673(00)00771-8.CrossRefGoogle Scholar
  14. Huybrechts, T., Dewulf, J., & Van Langenhove, H. (2005). Priority volatile organic compounds in surface waters of the southern North Sea. Environmental Pollution, 133(2), 255–264. doi: 10.1016/j.envpol.2004.05.039.CrossRefGoogle Scholar
  15. Ibanez, M., Sancho, J. V., McMillan, D., Rao, R., & Hernandez, F. (2008). Rapid non-target screening of organic pollutants in water by ultraperformance liquid chromatography coupled to time-of-light mass spectrometry. TrAC Trends in Analytical Chemistry, 27(5), 481–489. doi: 10.1016/j.trac.2008.03.007.CrossRefGoogle Scholar
  16. Kang, Y.-H., Gong, Z.-Y., Wang, Z.-J., & Li, G.-G. (2001). The study of VOCs in Guanting Reservoir and Yongdinghe River. Acta Scientiae Circumstantiae, 21(3), 338–343 (in Chinese).Google Scholar
  17. Kostopoulou, M. N., Golfinopoulos, S. K., Nikolaou, A. D., Xilourgidis, N. K., & Lekkas, T. D. (2000). Volatile organic compounds in the surface waters of Northern Greece. Chemosphere, 40(5), 527–532. doi: 10.1016/s0045-6535(99)00293-3.CrossRefGoogle Scholar
  18. Kumar, A., & Xagoraraki, I. (2010). Pharmaceuticals, personal care products and endocrine-disrupting chemicals in U.S. surface and finished drinking waters: a proposed ranking system. Science of the Total Environment, 408(23), 5972–5989. doi: 10.1016/j.scitotenv.2010.08.048.CrossRefGoogle Scholar
  19. Liu, L.-H., & Zhou, H.-D. (2011). Investigation and assessment of volatile organic compounds in water sources in China. Environmental Monitoring and Assessment, 173(1–4), 825–836. doi: 10.1007/s10661-010-1426-3.CrossRefGoogle Scholar
  20. Liu, H.-W., Liu, Y.-T., Wu, B.-Z., Nian, H.-C., Chen, H.-J., Chiu, K.-H., & Lo, J.-G. (2009). Process sampling module coupled with purge and trap–GC–FID for in situ auto-monitoring of volatile organic compounds in wastewater. Talanta, 80(2), 903–908. doi: 10.1016/j.talanta.2009.08.011.CrossRefGoogle Scholar
  21. Liu, W., Zhai, C.-Z., Liu, P., Yu, J.-Y., & Xiao, Z.-J. (2012). Study on volatile organic compounds determination in surface water samples from Yangtze River. Environment and Ecology in the Three Gorges, 34(1), 44–46 (in Chinese).Google Scholar
  22. Ma, H.-L., Zhang, H.-J., Tian, Y.-Z., Wang, L.-X., & Chen, J.-P. (2011). A novel vapor dynamic headspace enrichment equipment for nontarget screening of volatile organic compounds in drinking water. Chinese journal of chromatography, 29(9), 912–917 (in Chinese).Google Scholar
  23. Martínez, E., Lacorte, S. L., Llobet, I., Viana, P., & Barceló, D. (2002). Multicomponent analysis of volatile organic compounds in water by automated purge and trap coupled to gas chromatography–mass spectrometry. Journal of Chromatography A, 959(1–2), 181–190. doi: 10.1016/s0021-9673(02)00439-9.CrossRefGoogle Scholar
  24. Miermans, C. J. H., van der Velde, L. E., & Frintrop, P. C. M. (2000). Analysis of volatile organic compounds, using the purge and trap injector coupled to a gas chromatograph/ion-trap mass spectrometer: review of the results in Dutch surface water of the Rhine, Meuse, Northern Delta Area and Westerscheldt, over the period 1992–1997. Chemosphere, 40(1), 39–48. doi: 10.1016/s0045-6535(99)00229-5.CrossRefGoogle Scholar
  25. Nikolaou, A. D., Golfinopoulos, G., Kostopoulou, M. N., Kolokythas, G. A., & Lekkas, T. D. (2002). Determination of volatile organic compounds in surface waters and treated wastewater in Greece. Water Research, 36(11), 2883–2890. doi: 10.1016/s0043-1354(01)00497-3.CrossRefGoogle Scholar
  26. Oskouie, A. K., Lordi, D. T., Granato, T. C., & Kollias, L. (2008). Plant-specific correlations to predict the total VOC emissions from wastewater treatment plants. Atmospheric Environment, 42(19), 4530–4539. doi: 10.1016/j.atmosenv.2008.01.062.CrossRefGoogle Scholar
  27. Pitarch, E., Portoles, T., Marin, J. M., Ibanez, M., Albarran, F., & Hernandez, F. (2010). Analytical strategy based on the use of liquid chromatography and gas chromatography with triple–quadrupole and time-of-flight MS analyzers for investigating organic contaminants in wastewater. Analytical and Bioanalytical Chemistry, 397(7), 2763–2776. doi: 10.1007/s00216-010-3692-x.CrossRefGoogle Scholar
  28. Pyle, S. M., Sovocool, G. W., & Riddick, L. A. (2006). Analysis of volatiles and semivolatiles in drinking water by microextraction and thermal desorption. Talanta, 69(2), 494–499. doi: 10.1016/j.talanta.2005.10.020.CrossRefGoogle Scholar
  29. Ramaiah, N., Kenkre, V. D., & Verlecar, X. N. (2002). Marine environmental pollution stress detection through direct viable counts of bacteria. Water Research, 36(9), 2383–2393. doi: 10.1016/s0043-1354(01)00435-3.CrossRefGoogle Scholar
  30. Rosell, M., Lacorte, S., & Barcelo, D. (2006). Analysis, occurrence and fate of MTBE in the aquatic environment over the past decade. Trends in Analytical Chemistry, 25(10), 1016–1029. doi: 10.1016/j.trac.2006.06.011.CrossRefGoogle Scholar
  31. Safarova, V. I., Sapelnikova, S. V., Djazhenko, E. V., Teplova, G. I., Shajdulina, G. F., & Kudasheva, F. K. (2004). Gas chromatography–mass spectrometry with headspace for the analysis of volatile organic compounds in waste water. Journal of Chromatography B, 800(1–2), 325–330. doi: 10.1016/j.jchromb.2003.10.070.CrossRefGoogle Scholar
  32. Schmidt, T. C., Haderlein, S. B., Pfister, R., & Forster, R. (2004). Occurrence and fate modeling of MTBE and BTEX compounds in a Swiss Lake used as drinking water supply. Water Research, 38(6), 1520–1529. doi: 10.1016/j.watres.2003.12.027.CrossRefGoogle Scholar
  33. Sewer Department of Kaohsiung Municipal Government. Report of Cheun-Tsen River Environmental Monitoring Project. (2003). Kaohsiung City; Taiwan: Kaohsiung Municipal Government (in Chinese).Google Scholar
  34. Shimada, T., Yamazaki, H., Oda, Y., Hiratsuka, A., Watabe, T., & Guengerich, F. P. (1996). Activation and inactivation of carcinogenic dihaloalkanes and other compounds by glutathione S-transferase 5-5 in Salmonella typhimurium tester strain NM5004. Chemical Research in Toxicology, 9(1), 333–340. doi: 10.1021/tx950125v.CrossRefGoogle Scholar
  35. USEPA Method 524.3. (2009) Measurement of purgeable organic compounds in water by capillary column gas chromatography/mass spectrometry: Accessed 526 October 2012.
  36. Vilve, M., Vilhunen, S., Vepsalainen, M., Kurniawan, T. A., Lehtonen, N., Isomaki, H., & Sillanpaa, M. (2010). Degradation of 1,2-dichloroethane from wash water of ion-exchange resin using Fenton’s oxidation. Environmental Science and Pollution Research, 17(4), 875–884. doi: 10.1007/s11356-009-0291-5.CrossRefGoogle Scholar
  37. Wollin, K. M., & Dieter, H. H. (2005). Toxicological guidelines for monocyclic nitro-, amino- and aminonitroaromatics, nitramines, and nitrate esters in drinking water. Archives of Environmental Contamination and Toxicology, 49(1), 18–26. doi: 10.1007/s00244-004-0112-2.CrossRefGoogle Scholar
  38. Wu, B.-Z., Feng, T.-Z., Sree, U., Chiu, K.-H., & Lo, J.-G. (2006). Sampling and analysis of volatile organics emitted from wastewater treatment plant and drain system of an industrial science park. Analytica Chimica Acta, 576(1), 100–111. doi: 10.1016/j.aca.2006.03.057.CrossRefGoogle Scholar
  39. Xing, Z.-Y., Li, N.-J., Zhang, B., Nie, Z.-Y., Qu, Y., & Jia, L.-X. (2004). Study on ordor pollution characteristic and principle of Hunhe River in Shenyang. Environmental Protection Science, 30, 21–24 (in Chinese).Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Huilian Ma
    • 1
  • Haijun Zhang
    • 1
  • Longxing Wang
    • 1
  • Jincheng Wang
    • 1
  • Jiping Chen
    • 1
  1. 1.Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina

Personalised recommendations