Environmental Monitoring and Assessment

, Volume 186, Issue 4, pp 2297–2311 | Cite as

Noise tolerance of algorithms for estimating chlorophyll a concentration in turbid waters

  • Jun ChenEmail author


The accuracy and noise tolerance of 13 global models and 5 Case II chlorophyll a (chl a) retrieval models were evaluated using three dataset. It was found that if 5 % input noise related to atmospheric correction is considered, then the uncertainty associated with noise tolerance varied from 5.5 % to 55.6 %, and these uncertainties generally accounts for 15.63 % to 24.75 % of the total uncertainty. This observation suggests that an optimal algorithm not only should have a strong chl a concentration prediction ability but also should possess high insensitivity to the noise of remote-sensing imagery. The accuracy evaluations of chl a models were based on comparisons of chl a predicted models with chl a concentration measured analytically for field measurements. The results indicate that none of the selected chl a estimation algorithms provide accurate retrievals of chl a in turbid waters. This may be attributed to the strong optical influence of organic and inorganic matter at the blue green range, and the non-negligible of non-organic matter absorption at the red and near-infrared ranges. In order to solve this problem, the chl a concentration retrieval models must be further optimized. After being optimized using the empirical optimized method constructed in this paper, a single parameterized NDCI (normalized difference chl a index) model produces accurate retrievals in the Yellow River Estuary, Taihu Lake and Chesapeake Bay. If 5 % input noise associated with residual uncertainty 0of atmospheric correction is taken into account, the model produces only 29.96 % uncertainty for the remote sensing of chl a concentration in these three turbid waters.


Remote sensing Chlorophyll a concentration Noise tolerance Turbid waters 



This study is supported by the China State Major Basic Research Project (2013CB429701), Projects of International Cooperation and Exchanges of National Natural Science Foundation of China (41210005), Science Foundation for 100 Excellent Youth Geological Scholars of China Geological Survey, Serial Maps of Geology and Geophysics on China Seas and Land on the Scale of 1:1000000 (200311000001), and the Public Science and Technology Research Funds Projects of Ocean (201005030). We would like to just express our gratitude to two anonymous reviewers for their useful comments and suggestions.


  1. Aiken, J., Fishwick, J. R., Lavender, S., Barlow, R. B., Moore, G. F., Sessions, H., et al. (2007). Validation of MERIS reflectance and chlorophyll during the BENCAL cruise October 2002: Preliminary validation of new demonstration products for phytoplankton functional types and photosynthetic parameters. International Journal of Remote Sensing, 28, 497–516.CrossRefGoogle Scholar
  2. ASD (1999). Analytic Spectral Devices. Technical Guide, 3rd edition.Google Scholar
  3. Carder, K. L., Chen, F. R., Lee, Z. P., Hawes, S. K., & Cannizzaro J. P. (2003). MODIS ocean science team algorithm theoretical basis document: Case 2 chlorophyll a. ATBD 19, Version 7.Google Scholar
  4. Carder, K. L., Chen, F. R., Cannizzaro, J. P., Campbell, J. W., & Mitchell, B. G. (2004). Performance of the MODIS semi-analytical ocean color algorithm for chlorophyll-a. Advances in Space Research, 33, 1152–1159.CrossRefGoogle Scholar
  5. Chang, G. C., & Gould, R. W. (2006). Comparisons of optical properties of the coastal ocean derived from satellite ocean color and in situ measurements. Optics Express, 14(22), 10149–10163.CrossRefGoogle Scholar
  6. Chen, J., & Quan, W. T. (2013). An improved algorithm for retrieving chlorophyll-a from the Yellow River Estuary using MODIS imagery. Environmental Monitoring and Assessment, 185, 2243–2255.CrossRefGoogle Scholar
  7. Chen, J. X., Yu, C. H., & Jin, L. (2003). Mathematical analysis. Beijing: Higher Education Press.Google Scholar
  8. Chen, J., Zhou, G. H., Wen, J. G., & Fu, J. (2010a). Effect of remotely sensed data errors on the retrieving accuracy of territorial parameters. Spectroscopy and Spectral Analysis, 30(5), 1347–1350.Google Scholar
  9. Chen, J., Zhou, G. H., Wen, Z. H., & Fu, J. (2010b). Effect of remotely sensed data errors on the retrieving accuracy of territorial parameters. Spectroscopy and Spectral Analysis, 30(5), 1347–1350.Google Scholar
  10. Chen, J., Fu, J., & Zhang, M. W. (2011a). An atmospheric correction algorithm for Landsat/TM imagery basing on inverse distance spatial interpolation algorithm: A case study in Taihu Lake. IEEE Journal of Selected Applied Earth Observation and Remote Sensing, 4(4), 882–889.Google Scholar
  11. Chen, J., Wen, Z. H., & Xiao, Z. Q. (2011b). Spectral geometric triangle properties of chlorophyll-a inversion in Taihu Lake based on TM data. Journal of Water Resource and Projection, 3(1), 67–75.Google Scholar
  12. Chen, J., Fu, J., & Sun, J. H. (2012). Using Landsat/TM imagery to estimating nitrogen and phosphorus concentration in Taihu Lake, China. IEEE Journal of Selected Applied Earth Observation and Remote Sensing, 5(1), 273–280.Google Scholar
  13. Clavano, W. R., Boss, E., & Lee, K. B. (2007). Inherent optical properties of non-spherical marine-like particles—from theory to observation. Oceanography and Marine Biology, 45, 1–38.Google Scholar
  14. Dall'Olmo, G., & Gitelson, A. A. (2005). Effect of bio-optical parameter variability on the remote estimation of chlorophyll-a concentration in turbid productive waters: Experimental results. Applied Optics, 44, 412–422.CrossRefGoogle Scholar
  15. George, D. G. (1997). The airborne remote sensing of phytoplankton chlorophyll-a in the lakes and tarns of the English Lake District. International Journal of Remote Sensing, 18(9), 1961–1975.CrossRefGoogle Scholar
  16. Gilerson, A. A., Gitelson, A. A., Zhou, J., Gurlin, D., Moses, W., & Joannou, I. (2010). Algorithms for remote estimation chlorophyll-a in coastal and inland waters using red and near-infrared bands. Optical Express, 18, 24109–24125.CrossRefGoogle Scholar
  17. Gilpin, L., & Tett, P. (2001). A methods for analysis of benthic chlorophyll-a pigment, In Marine biology report, 326–341. UK: Napier University Press.Google Scholar
  18. Gitelson, A. A. (1992). The peak near 700 nm on reflectnce spectra of algae and water: Relationships of its magnitude and position with chlorophyll concentration. Internal Journal of Remote Sensing, 13, 3367–3373.CrossRefGoogle Scholar
  19. Gitelson, A. A., Dall'Olmo, G., Moses, W., Rundquist, D. C., Barrow, T., Fisher, T. R., et al. (2008). A simple semi-analytical model for remote estimation of chlorophyll-a in turbid waters: Validation. Remote Sensing of Environment, 112, 3582–3593.CrossRefGoogle Scholar
  20. Gons, H. J., Rijkeboer, M., Bagheri, S., & Ruddick, K. G. (1999). Optical teledection of chlorophyll a in estuarine and coastal waters. Environmental Science and Technology, 34, 5189–5192.CrossRefGoogle Scholar
  21. Gons, H. J., Auer, M. T., & Effler, S. W. (2008). MERIS satellite chlorophyll mapping of oligotrophic and eutrophic waters in the Laurentian Great Lakes. Remote Sensing of Environment, 112, 4098–4106.CrossRefGoogle Scholar
  22. Gordon, H. R., & Franz, B. A. (2008). Remote sensing fo ocean color: Assessment of the water-leaving radiance bidirectional effects on the atmospheric diffuse transmittance for SeaWiFS and MODIS intercomparisons. Remote Sensing Environment, 112, 2667–2685.CrossRefGoogle Scholar
  23. Gordon, H. R., & Voss K. J. (1999). MODIS normalized water-leaving radiance algorithm theoretical basis document. NASA Technic Document. Under Contract Number NAS5-31363, Version 4.Google Scholar
  24. Hu, C., Carder, K. L., & Muller-Karger, F. E. (2001). How precise are SeaWiFS ocean color estimates? Implications of digitization-noise errors. Remote Sensing Environment, 76, 239–249.CrossRefGoogle Scholar
  25. Hyde, K. J. W., O'Reilly, J. E., & Oviatt, C. A. (2007). Validation of SeaWiFS chlorophyll a in Massachusetts Bay 2007. Remote Sensing of Environment, 27, 1677–1691.Google Scholar
  26. Leathers, R. A., & McCormick, N. J. (1997). Ocean inherent optical properties estimation from irradiances. Applied Optics, 36(33), 8685–8699.CrossRefGoogle Scholar
  27. Lee, Z. P., Carder, K. L., & Arnone, R. A. (2002). Deriving inherent optical properties from water color: A multi-band quasi-analytical algorithm for optically deep waters. Applied Optics, 41(27), 5755–5772.CrossRefGoogle Scholar
  28. Marriari, M., Hu, M. C., & Daly, K. (2006). Validation of SeaWiFS chlorophyll a concentrations in the South Ocean: A revisit. Remote Sensing of Environment, 105, 367–375.Google Scholar
  29. Matthews, M. W. (2011). A current review of empirical procedures of remote sensing in inland and near-coastal transitional waters. International Journal of Remote Sensing, 32(21), 6855–6899.CrossRefGoogle Scholar
  30. Mishra, S., & Mishra, D. R. (2012). Normalized difference chlorophyll index: A novel model for remote estimation of chlorophyll-a concentration in turbid productive waters. Remote Sensing of Environment, 117, 394–406. doi: 10.1016/j.rse.2011.10.016.CrossRefGoogle Scholar
  31. Moore, T. S., Campbell, J. W., & Dowell, M. D. (2009). A class-based approach to characterizing and mapping the uncertainty of the MODIS ocean chlorophyll product. Remote Sensing of Environment, 113, 2424–2430.CrossRefGoogle Scholar
  32. Morel, A., & Prieur, L. (1977). Analysis of variances in ocean color. Limnology and Oceanography, 22, 709–722.CrossRefGoogle Scholar
  33. Moses, W., Gitelson, A. A., Berdnikov, S., & Povazhnyi, V. (2009). Satellite estimation of chlorophyll-a concentration using the red and NIR bands of MERIS—the Azov Sea case Study. IEEE Geoscience and Remote Sensing Letters, 6(4), 845–849.CrossRefGoogle Scholar
  34. Mueller, J. L., & Fargion, G. S. (2002). Ocean optics protocols for satellite ocean color sensor validation, Revision 3. SeaWiFS Technical Report Series (Part II):171–179.Google Scholar
  35. Mueller, J. L., Davis, C. O., Arnone, R. A., Frouin, R., Carder, K. L., Lee, Z. P., Steward, R. G., Hooker, S., Mobley, C. D., & McClain C. R. (2003). Above-water radiance and remote sensing measurement and analysis protocols. Ocean optics protocols for satellite ocean-color sensor validation revision 4: Vol. III. Radiometric measurements and data analysis protocols. NASA Technical Memorandum 2003–21162.Google Scholar
  36. O'Reilly, J. E., Maritorena, S., Mitchell, B. G., Siegcl, D. A., Carder, K. L., & Garver, S. A. (1998). Ocean color chlorophyll algorithms for SeaWiFS. Journal of Geophysical Research, 103(11), 937–953.Google Scholar
  37. Ruddick, K. G., Gons, H. J., Rijkeboer, M., & Tilstone, G. (2001). Optical remote sensing of chlorophyll a in case II waters by use of an adaptive two-band algorithm with optimal error properties. Applied Optics, 40, 3575–3585.Google Scholar
  38. Smyth, T. J., Moore, G. F., Hirata, T., & Aiken, J. (2006). Semi-analytical model for the derivation of ocean color inherent optical properties: Description, implementation, and performance assessment. Applied Optics, 45(31), 8116–8132.CrossRefGoogle Scholar
  39. Spyrakos, E., Vilas, L. G., Torres Palenzuela, J. M., & Barton, E. D. (2011). Remote sensing chlorophyll a of optically complex waters (rias Baixas, NW Spain): Application of a regionally specific chlorophyll a algorithm for MERIS full resolution data during an upwelling cycle. Remote Sensing of Environment, 115, 2471–2485. doi: 10.1016/j.rse.2011.05.008.CrossRefGoogle Scholar
  40. Szeto, M., Werdell, P. J., Moore, T. S., & Campbell J. W. (2011). Are the world's oceans optically different. Journal of Geophysical Research 116. doi: 10.1029/2011JC007230.
  41. Tassan, S., & Ferrari, G. M. (2003). Variability of light absorption by aquatic particles in the near-infrared spectral region. Applied Optics, 42(24), 4802–4810.CrossRefGoogle Scholar
  42. Tilstone, G. H., Angel-Benavides, I. M., Pradhan, Y., Shutler, J. D., Groom, S., & Sathyendranath, S. (2011). An assessment of chlorophyll-a algorithms available for SeaWiFS in coastal and open areas of the Bay of Bengal and Arabian Sea. Remote Sensing Environment, 115, 2277–2291.CrossRefGoogle Scholar
  43. Tzortziou, M., Herman, J. R., Gallegos, C. L., Neale, P. J., Subramanian, A., Harding, L. W., et al. (2006). Determination of chlorophyll contentand tropic state of lakes using field spectrometer and IRS-IC satellite data in the Mecklenburg Lake Distract, Germany. Remote Sensing of Environment, 73, 227–235.Google Scholar
  44. Tzortziou, M., Subramanian, A., Herman, J. R., Gallegos, C. L., Neale, P. J., & Harding, L. W. (2007). Remote sensing reflectancec and inherent optical properties in the mid Chesapeake Bay. Estuarine, Coastal and Shelf Science, 72, 16–32.CrossRefGoogle Scholar
  45. Wang, M., Shi, W., & Tang, J. (2011). Water property monitoring and assessment for China's inland Lake Taihu from MODIS-Aqua measurements. Remote Sensing of Environment, 115, 841–854. doi: 10.1016/j.rse.2010.11.012.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.School of Ocean SciencesChina University of GeosciencesBeijingChina
  2. 2.The Key Laboratory of Marine Hydrocarbon Resources and Environmental GeologyQingdao Institute of Marine GeologyQingdaoChina

Personalised recommendations