Environmental Monitoring and Assessment

, Volume 186, Issue 4, pp 2231–2242 | Cite as

Water pollution of Sabarmati River—a Harbinger to potential disaster



River Sabarmati is one of the biggest and major river of Gujarat that runs through two major cities of Gujarat, Gandhinagar and Ahmedabad and finally meets the Gulf of Khambhat (GoK) in the Arabian Sea. A study was conducted to evaluate the water quality of this river, as it could possibly be one of the major sources for filling up Kalpasar, the proposed man-made freshwater reservoir supposed to be the biggest one in the world. A total of nine sampling stations were established covering 163 km stretch of the river from upstream of Gandhinagar city to Vataman near Sabarmati estuary. Physicochemical (temprature, pH, salinity, chloride, total dissolved solids, turbidity, dissolved oxygen, biochemical oxygen demand, phenol, and petroleum hydrocarbons), biological (phytoplankton), and microbiological (total and selective bacterial count) analyses indicated that the river stretch from Ahmedabad-Vasana barriage to Vataman was highly polluted due to perennial waste discharges mainly from municipal drainage and industries. An implementation of sustainable management plan with proper treatment of both municipal and industrial effluents is essential to prevent further deterioration of the water quality of this river.


Water pollution Sabarmati River Physicochemical parameters Bacteria Phytoplankton 



We sincerely thank Professor B. Jha, Discipline Coordinator, Marine Biotechnology, and Ecology Discipline for his encouragement and timely support for carrying out this work. Dr. N. Chowdhury, University of Delaware, Newark, USA, and Prof. Purnimaben Mehta, Retired Prof & Head, Department of English, Bhavnagar University, Bhavnagar, are gratefully acknowledged for improving the language of the manuscript.


  1. APHA Standard Method for Examination of water and waste water (2005) 21st Ed. APHA, AWWA & WED, Washington.Google Scholar
  2. Bere, T., & Tundisi, J. G. (2011). Applicability of borrowed diatom-based water quality assessment indices in streams around São Carlos-SP. Brazil Hydrobiologia, 673, 179–192. doi: 10.1007/s10750-011-0772-7.CrossRefGoogle Scholar
  3. Biligrami, K. S. (1988). Biological monitoring of rivers, problems and prospect in India. Aquatic Ectovicology, 245–250.Google Scholar
  4. Bhutiani, R., & Khanna, D. R. (2007). Ecological study of river Suswa: Modeling DO and BOD. Environmental Monitoring and Assessment, 125, 183–195. doi: 10.1007/510661-006-9251-4.CrossRefGoogle Scholar
  5. Bordalo, A., Nilsumranchit, W., & Chalermwat, K. (2001). Water quality and uses of the Bangpakong River (Eastern Thailand). Water Reserch, 35, 3635–3642.CrossRefGoogle Scholar
  6. Brown, R. M., McClelland, N. I., Deininger, R. A., & Tozer, R. G. (1970). Journal of Water and Sewage Works, 117, 339.Google Scholar
  7. Celik, M. (2002). Water quality assessment and investigation of the relationship between the River Delice and the aquifer systems in the vicinity of Yerkoy (Yozgat, Turkey). Environmental Geology, 42, 690–700.Google Scholar
  8. Datta, P. S. (1983). Trend analysis of water quality in the Sabarmati river at Ahmedabad for a decade (1969–1978). Dissolved loads of River and Surface water quantity/quality relationship (Proceedings of the Hamburg Symposium, August 1983). IAHS Publ., No. 141.Google Scholar
  9. Davi, M. L., & Gnudi, F. (1999). Phenolic compounds in surface water. Water Reserch, 33, 3213–3219.CrossRefGoogle Scholar
  10. Desikachary, T. V. (1986–1989). Atlas of Diatoms- Marine diatoms of the Indian Ocean region Vol.I-VI. Madras Science Foundation, Madras, (Plate 1–809).Google Scholar
  11. Dojlido, J., Raniszewski, J., & Woyciechowska, J. (1994). Water quality index applied to rivers in the Vistula river basin in Poland. Environtal Monitering and Assessment, 33, 33–42.CrossRefGoogle Scholar
  12. Grasshoff, K., Kremling, K., & Ehrhardt, M. (1999). Methods of Seawater Analysis third edition, Grasshoff Willey-VCH. doi  10.1002/9783527613984.
  13. Hassan, M. S., Salem, F. B., & El-salam, N. A. (1987). Colorimetric determination of phenol in water samples. Analytical Letters, 20, 677–687. doi: 10.1080/00032718708062921.CrossRefGoogle Scholar
  14. He, B., Oki, T., Kanae, S., Mouri, G., Kodama, K., Komori, D., et al. (2009). Integrated biogeochemical modelling of nitrogen load from anthropogenic and natural sources in Japan. Ecological Modeling, 220, 2325–2334. doi: 10.1016/j.ecomodel.2009.05.018.CrossRefGoogle Scholar
  15. He, B., Kanae, S., Oki, T., Hirabayashi, Y., Yamashiki, Y., & Takara, K. (2011). Assessment of global nitrogen pollution in rivers using an integrated biogeochemical modeling framework. Water Research, 45, 2573–2586. doi: 10.1016/j.waters.2011.02.011.CrossRefGoogle Scholar
  16. IS: Tolerance Limits for Inland Surface Waters Subject to Pollution (IS-1055: 1991), ISI New Delhi, India (1991).Google Scholar
  17. IS: Tolerance Limits for Inland Surface Waters Subject to Pollution (IS-2296: 1974), ISI New Delhi, India (1974).Google Scholar
  18. Jain, S. K., Agarwal, P. K., & Singh, V. P. (2007). Hydrology and water resources of India. Dordrecht, The Netherlands: Springer. 13-978-1-4020-5180-7, e-book.Google Scholar
  19. Kannel, P. R., Lee, S., Lee, Y. S., Kanel, S. R., & Khan, S. P. (2007). Application of water quality indices and dissolved oxygen as indicators for river water classification and urban impact assessment. Environmental Monitoring and Assessesment, 132, 93–110. doi: 10.1007/s1066/-006-9505-1.CrossRefGoogle Scholar
  20. Karydis, M. (2009). Eutrophication assessment of coastal waters based on indicators: A Literature review. Global NEST Journal, 11, 373–390.Google Scholar
  21. Kinnear, P. R., & Gray, C. D. (2000). Spss for Windows Made Simple: Release 10. Psychology Press Ltd, - Computers - 416 pages.Google Scholar
  22. Kumar, R. N., Solanki, R. H., & Kumar, J. I. N. (2011). Assessment of spatial and temporal Variation in physic-chemical properties of water in river Sabarmati and Kharicut canel at Ahmedabad, Gujarat. Nat Environ Poll Techno, 10, 147–154.Google Scholar
  23. Li, S., Gu, S., Tana, X., & Zhang, Q. (2009). Water quality in the upper Han River basin, China: The impacts of land use/land cover in riparian buffer zone. Journal Hazard Mat, 165, 317–324. doi: 10.1016/j.jhazmat.2008.09.123.CrossRefGoogle Scholar
  24. Mahapatra, S. S., Sahu, M., Patel, R. K., & Panda, B. N. (2012). Prediction of Water Quality Using Principal Component Analysis. Water Qual Expo Health, 4, 93–104. doi: 10.1007/s12403-012-0068-9.CrossRefGoogle Scholar
  25. Meybeck, M., & Helmer, R. (1989). The quality of rivers: from pristine stage to global pollution. Global and Planetary Change Journal, 75, 283–309. doi: 10.1016/0921-8181(89)90007-6.Google Scholar
  26. Mishra, A. (2010). Assessment of Water Quality Using Principal Component Analysis: A Case Study of the River Ganges, Journal of Water Chemistry and Technology, 227–234.Google Scholar
  27. Mishra, A., Bhatt, V. D., Sevak, N., Shah, P., Patel, K., & Patel, C. (2010). Comparative study of Physico-chemical and microbiological parameters on lotic and ground water in selected outlaying area of central Gujarat. Journal of Chemical and Phermaceautical Research, 2, 174–177.Google Scholar
  28. Moskovchenko, D. V., Babushkin, A. G., & Artamonova, G. (2009). Surface water Quality assessment of the Vatinsky Egan River catchment, West Siberia. Environtal Monitoring and Assessment, 148, 359–368. doi: 10.1007/s10661-008-0166-0.CrossRefGoogle Scholar
  29. Odume, O. N., & Muller, W. J. (2011). Diversity and structure of Chironomidae communities in relation to water quality differences in the Swartkops River. Physical Chemistry of Earth, 36, 929–938. doi: 10.1016/j.pce.2011.07.063.CrossRefGoogle Scholar
  30. Olufemi, A. G., Tunde, E. O., & Temitope, A. O. (2011). Determination of total petroleum hydrocarbons and heavy metals in surface water and sediment of Ubeji River, Warri, Nigeria. Bioremediation, Biodiversity and Bioavailability, 5, 46–51.Google Scholar
  31. Panchani, M. H., & Pandya, M. J. (2013). Identification and quantification of non-point sources of pollution to Sabarmati River, Ahmedabad. International Journal of Engineering Research, 2, 71–75.Google Scholar
  32. Pescem, S. F., & Wunderlin, D. A. (2000). Use of water quality indices to verify the Impact of Coardoba City (Argentina) on Suquoia River. Water Research, 34, 2915–2926. doi: 10.1016/50043-1354(00)00036-1.CrossRefGoogle Scholar
  33. Phiri, O., Mumba, P., Moyo, B. H. Z., & Kadewa, W. (2005). Assessment of the impact of industrial effluents on water quality of receiving rivers in urban areas of Malawi. International Journal of Environmental Science and Technology, 2(3), 237–244.CrossRefGoogle Scholar
  34. Priyadarshi, N. (2009). Ganga river pollution in India- A brief report, American Chronicle, July 8, (http://www.americanchronicle.com/articles/view/109078).
  35. Rodier, J. (1984). L’analyse de l’eau: eaux naturelles, eaux résiduaires, eau de mer, 7e Edition. Paris: Dunod, Bordas.Google Scholar
  36. Saha, N. C., Bhunia, F., & Kaviraj, A. (1999). Toxicity of phenol to fish and aquatic ecosystems. Bulletin of Environmental Contamination and Toxicology, 63, 198–202.CrossRefGoogle Scholar
  37. Saksena, D. N., Garg, R. K., & Rao, R. J. (2008). Water quality and pollution status of Chambal river in National Chambal sanctuary. M P J Environ Biol, 29, 701–710.Google Scholar
  38. Sampat, P. (1996). The river Ganges’ long decline. World Watch, 9, 24.Google Scholar
  39. Status of Water Quality in India (2007) pp. 52–54.Google Scholar
  40. Suthar, S., Sharma, J., Chabukdhara, M., & Nema, A. K. (2010). Water quality assessment of river Hindon at Ghaziabad, India: impact of industrial and urban wastewater. Environmental Monitoring and Assessment, 165, 103–112. doi: 10.1007/s10661-009-0930-9.CrossRefGoogle Scholar
  41. Tomas, C. R. (1998). Identifying Marine Phytoplankton. Edited by Carmelo R. Tomas. Published by Academic Press. 858.Google Scholar
  42. Trobajo, R., Clavero, E., Chepurnov, V. A., Sabbe, K., Mann, D. G., Ishihara, S., et al. (2009). Morphological, genetic and mating diversity within the widespread bioindicator Nitzschia palea (Bacillariophyceae). Phycologia, 48, 443–459. doi: 10.2216/08-69.1.CrossRefGoogle Scholar
  43. Vieira, J. S., Pires, J. C. M., Martins, F. G., Vilar, V. J. P., Boaventura, R. A. R., & Botelho, C. M. S. (2012). Surface Water Quality Assessment of Lis River Using Multivariate Statistical Methods. Water Air Soil Pollution, 223, 5549–5561. doi: 10.1007/S11270-012-1267-5.CrossRefGoogle Scholar
  44. Villalobos, M., Avila-Forcada, A. P., & Gutierrez-Ruiz, M. E. (2008). An improved gravimetric method to determine total petroleum hydrocarbon in contaminated soils. Water Air Soil Pollution, 194, 151–161. doi: 10.1007/s11270-008-9704-1.CrossRefGoogle Scholar
  45. WHO (2006). Guidelines for Drinking-Water Quality, third ed., vol.1 –Recommendations. Word Health Organ.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Marine Biotechnology and Ecology DisciplineCSIR-Central Salt and Marine Chemicals Research InstituteBhavnagarIndia
  2. 2.Bhavnagar Municipal CorporationBhavnagarIndia

Personalised recommendations