Environmental Monitoring and Assessment

, Volume 186, Issue 3, pp 1931–1937 | Cite as

Mercury levels in myliobatid stingrays (Batoidea) from the Gulf of California: tissue distribution and health risk assessment

  • O. Escobar-Sánchez
  • J. Ruelas-Inzunza
  • J. C. Patrón-Gómez
  • D. Corro-Espinosa


With the aim of knowing Hg distribution in selected tissues of myliobatid stingrays and assessing health risk to Mexican population, Hg concentration was determined in the muscle and liver of four ray species. Total Hg levels were determined by cold vapor atomic absorption spectrophotometry. With respect to the muscle, devil rays (Mobula spp.) showed lower Hg levels (<0.22 μg g−1) than Rhinoptera steindachneri (0.37 ± 0.25 μg g-1 wet weight). In the case of the liver, the highest Hg concentration was found in Mobula japanica (0.22 ± 0.01 μg g−1). Hg levels in the muscle and liver varied according to the species; in some case, the liver accumulated more Hg than the muscle and the opposite pattern in other cases. R. steindachneri showed a significant difference between both tissues. No significant differences of Hg levels between males and females and between juveniles and adult specimens of R. steindachneri were found. Positive correlation between Hg concentrations and disc width and total weight was not significant for R. steindachneri (Rs < 0.36, p > 0.05). Batoids showed Hg values below the Mexican (NOM-027-SSA1-1993) limits (1.0 μg g−1) in fishes for human consumption. The species with the highest potential of Hg transfer to human population is R. steindachneri; however, an adult (70 kg) could consume approximately 943 g per week without representing a health risk. Nevertheless, further and continuous monitoring is needed since batoids support an important fishery in Mexican waters, being a food resource and income to coastal communities.


Bioaccumulation Heavy metal Batoids Pacific Ocean Mexico 



OES is grateful to the Secretaría de Educación Pública (SEP) and the Instituto Tecnológico de Mazatlán (ITMAZ) for the post-doctoral scholarship granted through the Programa Mejoramiento del Profesorado (PROMEP). Artisanal fishing site visits were funded by Instituto Nacional de Pesca of Mexico. We thank PADI Foundation for the financial support for the laboratory analysis (application number 7759). We thank the fishermen of Sinaloa and Sonora States for their valuable help in the biological sampling. We thank L. A. Gustavo Andrade Domínguez of the Shark Program of the CRIP-Mazatlán for the technical assistance.


  1. Adams, D. H., & McMichael, R. H., Jr. (1999). Mercury levels in four species of sharks from the Atlantic coast of Florida. Fishery Bulletin, 97, 372–379.Google Scholar
  2. Adams, D. H., McMichael, R. H., Jr., & Henderson, G. E. (2003). Mercury levels in marine and estuarine fishes of Florida 1989–2001. Florida Marine Research Institute Technical Report TR-9. 2nd ed. rev. 57pp.Google Scholar
  3. Bizarro, J. J., Smith, W. D., Márquez-Farías, J. F., & Hueter, R. E. (2007). Artisanal fisheries and reproductive biology of the golden cownose ray, Rhinoptera steindachneri Evermann and Jenkins, 1891, in the northern Mexican Pacific. Fisheries Research, 84, 137–146.CrossRefGoogle Scholar
  4. Bizarro, J. J., Smith, W. D., Márquez-Farías, J. F., Tyminsk, J., & Hueter, R. E. (2009). Temporal variation in the artisanal elasmobranch fishery of Sonora, Mexico. Fisheries Research, 97, 103–117.CrossRefGoogle Scholar
  5. Cai, Y., Rooker, J. R., Gill, G. A., & Turner, J. P. (2007). Bioaccumulation of mercury in pelagic fishes from the northern Gulf of California. Canadian Journal of Fisheries and Aquatic Sciences, 64, 458–469.CrossRefGoogle Scholar
  6. De Pinho, A. P., Guimarães, J. R. D., Martins, A. S., Costa, P. A. S., Olavo, G., & Valentin, J. (2002). Total mercury in muscle tissue of five shark species from Brazilian offshore waters: effects of feeding habit, sex, and length. Environmental Research, 89(3), 250–258.CrossRefGoogle Scholar
  7. DOF. (2010). Acuerdo mediante el cual se da a conocer la actualización de la Carta Nacional Pesquera. Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación. Diario Oficial de la Federación 2 de diciembre.Google Scholar
  8. Endo, T., Hisachimi, Y., Haraguchi, K., Kato, Y., Ohta, C., & Koga, N. (2008). Hg, Zn and Cu levels in the muscle and liver of tiger sharks (Galeocerdo cuvier) from the coast of Ishigaki Island, Japan: relationship between metal concentrations and body length. Marine Pollution Bulletin, 56, 1774–1780.CrossRefGoogle Scholar
  9. Frisk, M. G. (2010). Life history strategies of batoids. In J. C. Carrier, J. A. Musick, & M. R. Heithaus (Eds.), Biology of sharks and their relatives, vol. 2. Physiological adaptations, behavior, ecology, conservation and management of sharks and their relatives (pp. 283–316). USA: CRC Press.CrossRefGoogle Scholar
  10. García-Hernández, J., Cadena-Cárdenas, L., Betancourt-Lozano, M., García de la Parra, L. M., García-Rico, L., & Márquez-Farías, F. (2007). Total mercury content found in edible tissues of top predator fish from the Gulf of California, Mexico. Toxicological and Environmental Chemistry, 89(3), 507–522.CrossRefGoogle Scholar
  11. Goldstein, R. M., Brigham, M. E., & Stauffer, J. C. (1996). Comparison of mercury concentrations in liver, muscle, whole bodies, and composites of fish from the Red River of the North. Canadian Journal of Fisheries and Aquatic Science, 53, 244–252.CrossRefGoogle Scholar
  12. Gutiérrez-Galindo, E. A., Flores-Muñoz, G., & Villaescusa-Celaya, J. A. (1988). Hidrocarburos clorados en moluscos del valle de Mexicali y alto Golfo de California. Ciencias Marinas, 14, 91–113.Google Scholar
  13. Gutiérrez-Mejía, E., Lares, M. L., & Sosa-Nishizaki, O. (2009). Mercury and arsenic in muscle and liver of the golden cownose ray Rhinoptera stendaichneri, Evermann and Jenkins, 1891, from the upper Gulf of California, Mexico. Bulletin of Environmental Contamination and Toxicology, 83, 230–234.CrossRefGoogle Scholar
  14. Harrison, S. E., & Klaverkamp, J. F. (1990). Metal contamination in liver and muscle of northern pike (Esox lucius) and white sucker (Catastomus commersoni) and in sediments from lakes near the smelter at Flin Flon, Manitoba. Environmental Toxicology and Chemical, 9, 941–956.Google Scholar
  15. Hueter, R. E., Fong, W. G., Henderson, G., French, M. F., & Manire, C. A. (1995). Methylmercury concentration in shark muscle by species, size and distribution of sharks in Florida coastal waters. Water, Air, and Soil Pollution, 80(1–4), 893–899.CrossRefGoogle Scholar
  16. Joiris, C. R., Ali, I. B., Holsbeek, L., Kanuya-Kinoti, M., & Tekele-Michael, Y. (1997). Total and organic mercury in Greenland and Barents Seas demersal fish. Bulletin of Environmental Contamination and Toxicology, 58, 101–107.CrossRefGoogle Scholar
  17. Maycock, B. J., & Benford, D. J. (2007). Risk assessment of dietary exposure to methylmercury in fish in the UK. Human and Experimental Toxicology, 26(3), 185–190.CrossRefGoogle Scholar
  18. McEachran, J. D., & Aschliman, N. (2004). Phylogeny of Batoidea. In J. C. Carrier, J. A. Musick, & M. R. Heithaus (Eds.), Biology of sharks and their relatives (pp. 79–113). Florida: CRC Press.CrossRefGoogle Scholar
  19. Monteiro, L. R., Costa, V., Furness, R. W., & Santos, R. S. (1996). Mercury concentrations in prey fish indicate enhanced bioaccumulation in mesopelagic environments. Marine Ecology Progress Series, 141, 21–25.CrossRefGoogle Scholar
  20. Moody, J. R., & Lindstrom, P. M. (1977). Selection and cleaning of plastic containers for storage of trace element samples. Analytical Chemistry, 49, 2264–2267.Google Scholar
  21. Moreno, V. J., Pérez, A., Bastida, R. O., De Moreno, J. E. A., & Malaspina, A. M. (1984). Distribución de mercurio total en los tejidos de un delfín nariz de botella (Tursiops gephyreus Lahille, 1908) de la provincia de Buenos Aires (Argentina). Revista de Investigación y Desarrollo Pesquero, 4, 93–102.Google Scholar
  22. Nam, D. H., Adams, D. H., Reyier, E. A., & Basu, N. (2011). Mercury and selenium levels in lemon sharks (Negaprion brevirostris) in relation to a harmful red tide event. Environmental Monitoring and Assessment, 176, 549–559.CrossRefGoogle Scholar
  23. NOM-027-SSA1-1993. Norma Oficial Mexicana. (1993). Bienes y Servicios. Productos de la pesca. Pescados frescos-refrigerados y congelados. Especificaciones sanitarias. Especificaciones sanitarias. Published: 17 de Junio de 1994.Google Scholar
  24. NOM-029-2006. Norma Oficial Mexicana. (2006). Tiburones y rayas. Especificaciones para su aprovechamiento. Published: 15 Mayo 2007.Google Scholar
  25. Nortarbartolo-di-Sciara, G. (1988). Natural history of the rays of the genus Mobula in the Gulf of California. Fishery Bulletin, 86, 45–66.Google Scholar
  26. Núñez-Nogueira, G., Bautista-Ordoñez, J., & Rosiles-Martinez, R. (1998). Concentración y distribución de mercurio en tejidos del cazón (Rhizoprionodon terraenova) del Golfo de México. Veterinaria Mexico, 29(1), 15–21.Google Scholar
  27. Ordiano-Flores, A. (2009). Bioacumulación y biomagnificación de mercurio en atún aleta amarilla, Thunnus albacares, del Océano Pacífico Oriental (p. 88). Mexico: MSc. Thesis, Universidad Nacional Autónoma de México.Google Scholar
  28. Ruelas-Inzunza, J., & Páez-Osuna, F. (2005). Mercury in fish and shark tissues from two coastal lagoons in the Gulf of California, Mexico. Bulletin of Environmental Contamination and Toxicology, 74, 294–300.CrossRefGoogle Scholar
  29. Ruelas-Inzunza, J., Páez-Osuna, F., Ruíz-Fernández, C., & Zamora-Arellano, N. (2011). Health risk associated to dietary intake of mercury in selected coastal areas of Mexico. Bulletin of Environmental Contamination and Toxicology, 86, 180–188.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • O. Escobar-Sánchez
    • 1
  • J. Ruelas-Inzunza
    • 1
  • J. C. Patrón-Gómez
    • 1
  • D. Corro-Espinosa
    • 2
  1. 1.Instituto Tecnológico de MazatlánMazatlánMexico
  2. 2.Centro Regional de Investigaciones Pesqueras de MazatlánINAPESCAMazatlánMexico

Personalised recommendations