Advertisement

Environmental Monitoring and Assessment

, Volume 186, Issue 3, pp 1815–1824 | Cite as

Assessment of trace metals and porphyrins in excreta of Humboldt penguins (Spheniscus humboldti) in different locations of the northern coast of Chile

  • José E. Celis
  • Winfred Espejo
  • Daniel González-Acuña
  • Solange Jara
  • Ricardo Barra
Article

Abstract

To add data on trace metal contamination of Humboldt penguins in the South Pacific, levels of trace metals (As, Hg, Pb, Cu, Zn, and Cd) and porphyrins (copro-, uro-, and proto-) in excreta of Humboldt penguins that inhabit some important nesting sites on the northern coast of Chile were determined. Fresh excreta were collected on Pan de Azúcar Island, Chañaral Island, and Cachagua Island, from December 2011 to January 2012. Concentration of metals was determined by flame atomic absorption spectrophotometry, whereas porphyrins levels were measured by fluorimetric analysis. Concentrations (dry weight) of Cu (199.67 μg g−1), As (7.85 μg g−1), and Pb (12.78 μg g−1) were higher (p ≤ 0.05) in Cachagua Island. Colonies from Pan de Azúcar Island showed the highest levels of Hg (0.76 μg g−1), Cd (47.70 μg g−1), and Zn (487.10 μg g−1). Samples from Cachagua Island showed the highest (p ≤ 0.05) levels of copro- (2.16 nmol g−1), uro- (2.20 nmol g−1), and protoporphyrins (2.23 nmol g−1). There was a positive correlation between the metals As, Pb, and Cu with uro-, copro-, and protoporphyrins. The results indicated that penguin colonies from Cachagua Island are more exposed to metal contamination than penguin colonies from Pan de Azúcar and Chañaral Islands, thus being more likely to develop certain diseases caused by contamination with metals. Considering biomagnification, the metals detected in the excreta of Humboldt penguins can be a source of contamination from marine environments to terrestrial ecosystems, which could also affect other living organisms.

Keywords

Heavy metals Seabirds Penguins Excrement Biomonitoring Sea pollution 

Notes

Acknowledgments

The authors thank the personnel of the Laboratorio de Química (Universidad de Concepción, EULA-Chile) for their analytical support and Dr. Mario Briones for all the statistical analyses. The authors also thank Carla Louit, Javiera Meza, and Pablo Arrospide, all members of the Corporación Nacional Forestal, Chile, for providing logistical support. Sebastián Muñoz-Leal, Marcelo Flores, and Iván Torres are also acknowledged for fieldwork assistance. Permissions to work in the study area were given by the Servicio Nacional de Pesca and Corporación Nacional Forestal. This study was financially supported by project INACH T 18-09 granted to R. Barra and by project 211.154.023-1.0 of the Dirección de Investigación de la Universidad de Concepción. In addition, the authors also thank Diane Haughney for the English revision. Finally, the authors thank the referees for helpful suggestions on an early version of this manuscript.

References

  1. Ancora, S., Volpi, V., Olmastroni, S., Focardi, S., & Leonzio, C. (2002). Assumption and elimination of trace elements in Adélie penguins from Antarctica: a preliminary study. Marine Environmental Research, 54, 341–344.CrossRefGoogle Scholar
  2. Araya, B., & Millie, G. (2000). Guía de campo de las aves de Chile. http://books.google.cl/books?id=uwEFKkUc1ecC&printsec=frontcover&hl=es&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=true. Accessed 14 March 2013.
  3. Bargagli, R. (2008). Environmental contamination in Antarctic ecosystems. The Science of the Total Environment, 400, 212–226.CrossRefGoogle Scholar
  4. Bargagli, R., Nelli, L., Ancora, S., & Focardi, S. (1996). Elevated cadmium accumulation in marine organisms from Terra Nova Bay (Antarctica). Polar Biology, 16, 513–520.CrossRefGoogle Scholar
  5. Bargagli, R., Monaci, F., Sanchez-Hernandez, J., & Cateni, D. (1998). Biomagnification of mercury in an Antarctic marine coastal food web. Marine Ecology Progress Series, 169, 65–76.CrossRefGoogle Scholar
  6. Bengtsson, H., Alvenas, G., Nilsson, S., Hultman, B., & Oborn, I. (2006). Cadmium, copper and zinc leaching and surface run-off losses at the Öjebyn farm in Northern Sweden-temporal and spatial variation. Agriculture, Ecosystems & Environment, 113, 120–138.CrossRefGoogle Scholar
  7. Berg, T., Kallenborn, R., & Mano, S. (2004). Temporal trends in atmospheric heavy metal and organochlorine concentrations at Zeppelin, Svalbard. Arctic Antarctic and Alpine Research, 36, 284–291.CrossRefGoogle Scholar
  8. Beyer, N., Blus, L., Henny, C., & Audet, D. (1997). The role of sediment ingestion in exposing wood ducks to lead. Ecotoxicology, 6, 181–186.CrossRefGoogle Scholar
  9. Blais, J., Macdonald, R., Mackey, D., Webster, E., Harvey, C., & Smol, J. (2007). Biologically mediated transport of contaminants to aquatic systems. Environmental Science and Technology, 41, 1075–1084.CrossRefGoogle Scholar
  10. Boersma, P. D. (2008). Penguins as marine sentinels. Bioscience, 58, 597–607.CrossRefGoogle Scholar
  11. Borg, K., Wanntorp, H., Erne, K., & Hanko, E. (1966). Mercury poisoning in Swedish wildlife. The Journal of Applied Ecology, 3, 171–172.Google Scholar
  12. Burger, J., Trivedi, C., & Gochfeld, M. (2000). Metals in herring and great blackbacked gulls from the New York Bright: the role of salt gland in excretion. Environmental Monitoring and Assessment, 64, 569–581.CrossRefGoogle Scholar
  13. Burton, G. A. (2002). Sediment quality criteria in use around the world. Limnology, 3, 65–75.CrossRefGoogle Scholar
  14. Cárdenas-Bustamante, O., Varona-Uribe, M., Núñez-Trujillo, S., Ortiz-Varón, J., & Peña-Parra, G. (2001). Correlación de protoporfirina zinc y plomo en sangre en trabajadores de fábricas de baterías, de Bogotá, Colombia. Salud Pública de México, 43, 203–210.CrossRefGoogle Scholar
  15. Casini, S., Fossi, M., Gavilan, J., Barra, R., Parra, O., Leonzio, C., & Focardi, S. (2001). Porphyrin levels in excreta of sea birds of the Chilean coasts as nondestructive biomarker of exposure to environmental pollutants. Archives of Environmental Contamination and Toxicology, 41, 65–72.CrossRefGoogle Scholar
  16. Casini, S., Fossi, M., Leonzio, C., & Renzoni, A. (2003). Review: porphyrins as biomarkers for hazard assessment of bird populations: destructive and non-destructive use. Ecotoxicology, 12, 297–305.CrossRefGoogle Scholar
  17. Celis, J., Jara, S., González-Acuña, D., Barra, R., & Espejo, W. (2012). A preliminary study of trace metals and porphyrins in excreta of Gentoo penguins (Pygoscelis papua) at two locations of the Antarctic Peninsula. Archivos de Medicina Veterinaria, 44, 311–316.CrossRefGoogle Scholar
  18. Cortés, M., & Luna-Jorquera, G. (2011). Efecto de la edad y la localidad en la concentración de cadmio y cobre en el hígado de la gaviota dominicana Larus dominicanus. Revista de Biología Marina y Oceanografía, 46, 287–292.CrossRefGoogle Scholar
  19. CPL (Consejo Nacional de Producción Limpia). (2011). Acuerdo de Producción Limpia Zona Industrial Puchuncaví-Quintero Valparaíso. Ministerio de Economía, Fomento y Turismo.http://www.produccionlimpia.cl/medios/APL_Puchuncavi_final.pdf. Accessed 11 December 2012.
  20. De Matteis, F., & Lim, C. K. (1994). Porphyrins as nondestructive indicators of exposure to environmental pollutants. In M. C. Fossi & C. Leoncio (Eds.), Nondestructive biomarkers in vertebrales (pp. 93–128). Boca Raton: Lewis Publishers.Google Scholar
  21. De Moreno, J. E. A., Gerpe, M. S., & Moreno, V. J. (1997). Heavy metals in Antarctic organisms. Polar Biology, 17, 131–140.CrossRefGoogle Scholar
  22. Duruibe, J., Ogwuegbu, M., & Egwurugwu, J. (2007). Heavy metal pollution and human biotoxic effects. International Journal of Physical Sciences, 2, 112–118.Google Scholar
  23. Ellenberg, U., Mattern, T., Seddon, P. J., & Luna, G. (2006). Physiological and reproductive consequence of human disturbance in Humboldt penguins: the need for species-specific visitor management. Biological Conservation, 133, 95–106.CrossRefGoogle Scholar
  24. González, I., Muena, V., Cisternas, M., & Reaman, A. (2008). Acumulación de cobre en una comunidad vegetal afectada por contaminación minera en el valle de Puchuncaví, Chile central. Revista Chilena de Historia Natural, 81, 279–291.Google Scholar
  25. Headley, A. D. (1996). Heavy metals concentrations in peat profiles from the high Arctic. The Science of the Total Environment, 177, 105–111.CrossRefGoogle Scholar
  26. Herling, C., Culik, B., & Hennicke, C. (2005). Diet of the Humboldt penguin (Spheniscus humboldti) in northern and southern Chile. Marine Biology, 147, 13–25.CrossRefGoogle Scholar
  27. Horai, S., Watanabe, I., Takada, H., Iwamizu, Y., Hayashi, T., Tanabe, S., & Kuno, K. (2007). Trace element accumulations in 13 avian species collected from the Kanto area, Japan. The Science of theTotal Environment, 373, 512–525.CrossRefGoogle Scholar
  28. Kim, E. Y., Goto, R., Tanabe, S., Tanaka, H., & Tatsukawa, R. (1998). Distribution of 14 elements in tissues and organs of Oceanic seabirds. Archives of Environmental Contaminant and Toxicology, 35, 638–645.CrossRefGoogle Scholar
  29. Leonzio, C., Fossi, M., & Casini, S. (1996). Porphyrins as biomarkers of methylmercury and PCBs exposure in experimental quail. Bulletin of Environmental Contamination and Toxicology, 56, 244–250.CrossRefGoogle Scholar
  30. Lim, C. K. (1991). Porphyrins. In T. Hanai (Ed.), Liquid chromatography in biomedical analysis (pp. 209–229). Amsterdam: Elsevier.Google Scholar
  31. Lockwood, W., Poulus, V., Rossi, E., & Curnow, D. (1985). Rapid procedure for fecal porphyrin assay. Clinical Chemistry, 31, 1163–1167.Google Scholar
  32. Martinez-Haro, M., Taggart, M., & Mateo, R. (2010). Pb-Al relationships in waterfowl feces discriminate between sources of Pb exposure. Environmental Pollution, 158, 2485–2489.CrossRefGoogle Scholar
  33. Mateo, R., Taggart, M., Green, A., Cristofol, C., Ramis, A., Lefranc, A., Figuerola, J., & Meharg, A. (2006). Altered porphyrin excretion and histopathology of greylag geese (Anser anser) exposed to soil contaminated with lead and arsenic in the Guadalquivir marshes, southwestern Spain. Environmental Toxicology and Chemistry, 25, 203–212.CrossRefGoogle Scholar
  34. Metcheva, R., Yurukova, L., Teodorova, S., & Nikolova, E. (2006). The penguin feathers as bioindicator of Antarctica environmental state. The Science of the Total Environment, 362, 259–265.CrossRefGoogle Scholar
  35. Metcheva, R., Yurukova, L., & Teodorova, S. (2011). Biogenic and toxic elements in feathers, eggs, and excreta of Gentoo penguin (Pygoscelis papua ellsworthii) in the Antarctic. Environmental and Monitoring Assessment, 182, 571–585.CrossRefGoogle Scholar
  36. Meza, J., Simeone, A., García, M., & Monsalve, B. (1998). Censos de pingüino de Humboldt (Spheniscus humboldti) en el Monumento Natural Isla Cachagua y Santuario de la Naturaleza Islote Pájaro Niño, 1990–1997. Santiago: CONAF.Google Scholar
  37. Michelutti, N., Keatley, B., Brimble, S., Blais, J., Liu, H., Douglas, M., Mallory, M., Macdonald, R., & Smol, J. (2009). Seabird-driven shifts in Arctic pond ecosystems. Proceedings of the Royal Society B, 276, 591–596.CrossRefGoogle Scholar
  38. Miller, J. R., Hudson-Edwards, K. A., Lechler, P. J., Preston, D., & Macklin, M. G. (2004). Heavy metal contamination of water, soil and produce within riverine communities of the Río Pilcomayo basin, Bolivia. The Science of the Total Environment, 320, 189–209.CrossRefGoogle Scholar
  39. Montenegro, D., & González, M. T. (2012). Evaluation of somatic indexes, hematology and liver histopathology of the fish Labrisomus philippii from San Jorge Bay, northern Chile, as associated with environmental stress. Revista de Biología Marina y Oceanografía, 47, 99–107.CrossRefGoogle Scholar
  40. Nie, Y., Liu, X., Sun, L., & Emslie, S. (2012). Effect of penguin and seal excrement on mercury distribution in sediments from the Ross Sea region, East Antarctica. The Science of the Total Environment, 433, 132–140.CrossRefGoogle Scholar
  41. Ninomiya, R., Koizumi, N., & Murata, K. (2004). Metal concentrations in the liver and kidney of aquatic mammals and penguins. Biological Trace Element Research, 97, 135–147.Google Scholar
  42. Nriagu, J. O., & Pacyna, J. M. (1988). Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature, 333, 134–139.CrossRefGoogle Scholar
  43. Otero-Perez, X. L. (1998). Effects of nesting yellow-legged gulls (Larus cachinnans Pallas) on the heavy metal content of soils in the Cies Islands (Galicia, North-west Spain). Marine Pollution Bulletin, 36, 267–272.CrossRefGoogle Scholar
  44. Perfetti-Bolaño, A., & Moreno, L. (2013). Lead in colonies of Pygoscelid penguins in Ardley Peninsula, Antarctica. In M. Leppe et al. (Eds.), Avances en Ciencia Antártica (pp. 505–508). La Serena: Instituto Antártico Chileno.Google Scholar
  45. Ramirez, M., Massolo, S., Frache, R., & Correa, J. (2005). Metal speciation and environmental impact on sandy beaches due to El Salvador copper mine, Chile. Marine Pollution Bulletin, 50, 62–72.CrossRefGoogle Scholar
  46. Salamanca, M., Jara, B., & Rodríguez, T. (2004). Cu, Pb and Zn levels in Perumytilus purpuratus and water in San Jorge Bay, northern Chile. Gayana, 68, 53–62.Google Scholar
  47. Sánchez, J., Romieu, I., Ruiz, S., Pino, P., & Gutiérrez, M. (1999). Acute effects of breathable particulate matter and of sulfur dioxide on the respiratory health of children in the industrial area of Puchuncaví, Chile. Pan American Journal of Public Health, 6, 384–391.CrossRefGoogle Scholar
  48. Santos, I., Silva-Filho, E., Schaefer, C., Albuquerque-Filho, M., & Campos, L. (2005). Heavy metal contamination in coastal sediments and soils near the Brazilian Antarctic Station, King George Island. Marine Pollution Bulletin, 50, 185–194.CrossRefGoogle Scholar
  49. Schlosser, J., Dubach, J., Garner, T., Araya, B., Bernal, M., Simeone, A., Smith, K., & Wallace, R. (2009). Evidence for gene flow differs from observed dispersal patterns in the Humboldt Penguin. Conservation Genetics, 10, 839–849.CrossRefGoogle Scholar
  50. Schneider, W., Fuenzalida, R., Rodríguez-Rubio, E., Garcés-Vargas, J., & Bravo, L. (2003). Characteristics and formation of Eastern South Pacific Intermediate Water. Geophysical Research Letters, 30, 1–4.Google Scholar
  51. Stauber, J., Andrade, S., Ramirez, M., Adams, M., & Correa, J. (2005). Copper bioavailability in a coastal environment of northern Chile: comparison of bioassay and analytical speciation approaches. Marine Pollution Bulletin, 50, 1363–1372.CrossRefGoogle Scholar
  52. Sun, L. G., & Xie, Z. Q. (2001). Changes in lead concentration in Antarctic penguin droppings during the past 3000 years. Environmental Geology, 40, 1205–1208.CrossRefGoogle Scholar
  53. Tahri, M., Benyaïch, F., Bounakhla, M., Bilal, E., Gruffat, J. J., Moutte, J., & García, D. (2005). Multivariate analysis of heavy metal contents in soils. Sediments and water in the region of Meknes (central Morocco). Environmental Monitoring and Assessment, 102, 405–417.CrossRefGoogle Scholar
  54. Teodorova, S., Metcheva, R., & Topashka-Ancheva, M. (2003). Bioaccumulation and damaging action of polymetal industrial dust on laboratory mice Musmusculus alba I. Analysis of Zn, Cu, Pb and Cd disposition and mathematical model for Zn and Cd bioaccumulations. Environmental Research, 91, 85–94.CrossRefGoogle Scholar
  55. Vermeer, K., & Castilla, J. (1991). High cadmium residues observed during a pilot study in shorebirds and their prey downstream from the EI Salvador copper mine, Chile. Bulletin of Environmental Contamination and Toxicology, 46, 242–248.CrossRefGoogle Scholar
  56. Xie, Z., & Sun, L. (2008). A 1,800-year record of arsenic concentration in the penguin dropping sediment, Antarctic. Environmental Geology, 55, 1055–1059.CrossRefGoogle Scholar
  57. Yin, X., Xia, L., Sun, L., Luo, H., & Wang, Y. (2008). Animal excrement: a potential biomonitor of heavy metal contamination in the marine environment. The Science of the Total Environment, 399, 179–185.CrossRefGoogle Scholar
  58. Zhao, B., Maeda, M., Zhang, J., Zhu, A., & Ozaki, Y. (2006). Accumulation and chemical fractionation of heavy metals in Andisols after a different, 6-year fertilization management. Environmental Science Pollution Research, 13, 90–97.CrossRefGoogle Scholar
  59. Zúñiga, M. (1998). Ecotoxicología de metales en el ambiente acuático: Una revisión actualizada. In D. Arcos (Ed.), Minería del cobre, ecología y ambiente costero (pp. 349–376). Santiago: Aníbal Pinto.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • José E. Celis
    • 1
  • Winfred Espejo
    • 1
  • Daniel González-Acuña
    • 1
  • Solange Jara
    • 2
  • Ricardo Barra
    • 2
  1. 1.Facultad de Ciencias VeterinariasUniversidad de ConcepciónChillánChile
  2. 2.Unidad de Sistemas Acuáticos, Centro de Ciencias Ambientales EULA-ChileUniversidad de ConcepciónConcepciónChile

Personalised recommendations