Environmental Monitoring and Assessment

, Volume 186, Issue 3, pp 1371–1375 | Cite as

A new catalytic oxidation method for sensitive quantification of bromate in flours and bottled water using AgNPs

  • Abbas Farmany
  • Seyede Shima Mortazavi
  • Ehsan Hashemi
  • Reza Sahraei


In this paper, a simple and sensitive spectrophotometric method for the determination of nanomolar level of bromate, based on the catalytic effect of silver nanoparticles on the oxidation of acid red 14 by potassium bromate, is described. The reaction rate was monitored spectrophotometrically by measuring the decrease in absorbance of acid red 14 at 516 nm. The detection limit of the method was 8 ng/mL, and the linear range was between 15 and 130 ng/mL. The effects of acidity, concentration of reactants and reaction time, and external ions were also discussed. The optimum reaction conditions were fixed, and some kinetic parameters determined. The relative standard deviation for the determination of bromate at the concentration of 50 ng/mL was calculated to be 0.996 % (n = 10). The method has been successfully applied to the determination of bromate in flours and bottled waters.


Flours and bottled waters AgNPs Bromate Catalytic oxidation 


  1. Afkhami, A., Madrakian, T., & Bahram, M. (2005). Simultaneous spectrophotometric determination of iodate and bromate in water samples by the method of mean centering of ratio kinetic profiles. Journal of Hazardous Materials, 123(1–3), 250–255.CrossRefGoogle Scholar
  2. Akiyama, T., Yamanaka, M., Date, Y., Kubota, H., Nagaoka, M. H., Kawasaki, Y., Yamazaki, T., Yomota, C., & Maitani, T. (2002). Specific determination of bromate in bread by ion chromatography with ICP-MS. Shokuhin Eiseigaku Zasshi, 43(6), 348–351.CrossRefGoogle Scholar
  3. Cordeiro, F., Robouch, P., de la Calle, M. B., Emteborg, H., Charoud-Got, J., & Schmitz, F. (2011). Determination of dissolved bromate in drinking water by ion chromatography and post column reaction: interlaboratory study. Journal of AOAC International, 94(5), 1592–1600.CrossRefGoogle Scholar
  4. Dojlido, J., Zbiec, E., et al. (1999). Formation of the haloacetic acids during ozonation and chloration of water in Warsaw waterworks (Poland). Water Research, 33, 3111–3118.CrossRefGoogle Scholar
  5. Dong, C., Zhang, J., & Zhou, D.-Z. (2010). Spectroscopic studies of the interaction of silver nanoparticles with methylene blue. Journal of Measurement Science and Instrumentation, 1, 61–64.Google Scholar
  6. Fotsing, M., Barbeau, B., & Prevost, M. (2011). Low-level bromate analysis in drinking water by ion chromatography with optimized suppressed conductivity cell current followed by a post-column reaction and UV/Vis detection. Journal of Environmental Science Health, Part A, 46(4), 420–425.CrossRefGoogle Scholar
  7. Gahr, A., Huber, N., & Niessner, R. (1998). Fluorimetric determination of bromate by ion exchange separation and post-column derivatization. Mikrochimica Acta, 129(3–4), 281–290.CrossRefGoogle Scholar
  8. Gong, G., Jia, L., Qu, Y., & Wang, H. (1993). A fuorescence quenching method for the determination of bromate ion with 4,5- dibromophenylfuorone and cetyltrimethylammonium bromide. Analytical Letters, 26(10), 2277–2282.CrossRefGoogle Scholar
  9. Grguric, G., Trefry, J. H., et al. (1994). Ozonation products of bromine and chlorine in seawater aquaria. Water Research, 28, 1087–1094.CrossRefGoogle Scholar
  10. Jana, N. R., Sau, T. K., & Pal, T. (1999). Growing small silver particle as redox catalyst. Journal of Physical Chemistry B, 103, 115–118.CrossRefGoogle Scholar
  11. Jiang, Z.-J., Liu, C.-Y., & Sun, L.-W. (2005). Catalytic properties of silver nanoparticles supported on silica spheres. Journal of Physical Chemistry B, 109, 1730–1735.CrossRefGoogle Scholar
  12. Ketai, W., Huitao, L., Jian, H., Xingguo, C., & Zhide, H. (2000). Determination of bromate in bread additives and flours by flow injection analysis. Food Chemistry, 70, 509.CrossRefGoogle Scholar
  13. Kim, H.-J., & Shin, H.-S. (2012). Ultra trace determination of bromate in mineral water and table salt by liquid chromatography—tandem mass spectrometry. Talanta, 99, 677–682.CrossRefGoogle Scholar
  14. Kurokawa, Y., Maekawa, A., Takahashi, M., & Hayashi, Y. (1990). Toxicity and carcinogenicity of potassium bromate—a new renal carcinogen. Environmental Health Perspectives, 87, 309–335.Google Scholar
  15. Menendez-Miranda, M., Fernandez-Argüelles, M. T., Costa-Fernandez, J. M., Pereiro, R., & Sanz-Medel, A. (2013). Room temperature phosphorimetric determination of bromate in flour based on energy transfer. Talanta, 116, 231–236.CrossRefGoogle Scholar
  16. Oliveira, S. M., Segundo, M. A., Rangel, A. O. S. S., Lima, J. L. F. C., & Cerdà, V. (2011). Spectrophotometric determination of bromate in water using multisyringe flow injection analysis. Analytical Letters, 44, 284–297.CrossRefGoogle Scholar
  17. Pal, T., Sau, T. K., & Jana, N. R. (1997). Reversible formation and dissolution of silver nanoparticles in aqueous surfactant media. Langmuir, 13, 1481–1485.CrossRefGoogle Scholar
  18. Pal, T., Sau, T. K., & Jana, N. R. (1998). Silver hydrosol, organosol, and reverse micelle-stabilized sol—a comparative study. Journal of Colloid and Interface Science, 202, 30.CrossRefGoogle Scholar
  19. Pang, Y. H., Liu, L. B., Shen, X. F., & Qian, H. (2012). Determination of bromate in drinking water by capillary electrophoresis coupled with chemically modified electrode electrochemical detection. Scientia Sinica Chimica, 42, 157–163.CrossRefGoogle Scholar
  20. Pârvulescu, V. I., Cojocaru, B., Pârvulescu, V., Richards, R., Li, Z., Cadigan, C., Granger, P., Miquel, P., & Hardacre, C. (2010). Sol–gel-entrapped nano silver catalysts correlation between active silver species and catalytic behavior. Journal of Catalysis, 272, 92–100.CrossRefGoogle Scholar
  21. Sahraei, R., Farmany, A., & Mortazavi, S. S. (2013). A nanosilver-based spectrophotometry method for sensitive determination of tartrazine in food samples. Food Chemistry, 138, 1239–1242.CrossRefGoogle Scholar
  22. Stasiak, M., Lewiński, A., & Karbownik-Lewińska, M. (2009). Relationship between toxic effects of potassium bromate and endocrine glands. Endokrynologia Polska, 60(1), 40–50.Google Scholar
  23. Takayanagi, T., Ishida, M., Mbuna, J., Driouich, R., & Motomizu, S. (2006). Determination of bromate ion in drinking water by capillary zone electrophoresis with direct photometric detection. Journal of Chromatography A, 1128, 298–302.CrossRefGoogle Scholar
  24. Tóth, I. V., Santos, I. C., Azevedo, C. F., Fernandes, J. F., Páscoa, R. N., Mesquita, R. B., & Rangel, A. O. (2013). Flow-injection spectrophotometric determination of bromate in bottled drinking water samples using chlorpromazine reagent and a liquid waveguide capillary cell. Analytical Sciences, 29(5), 563–570.CrossRefGoogle Scholar
  25. von Gunten, U., & Oliveras, Y. (1998). Advanced oxidation of bromide-containing waters: bromate formation mechanisms. Environmental Science & Technology, 32, 63–70.CrossRefGoogle Scholar
  26. Wang, K., Liu, H., Huang, J., Chen, X., & Hu, Z. (2000). Determination of bromate in bread additives and flour by flow injection analysis. Food Chemistry, 70, 509–514.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Abbas Farmany
    • 1
  • Seyede Shima Mortazavi
    • 2
  • Ehsan Hashemi
    • 3
  • Reza Sahraei
    • 4
  1. 1.Departments of Chemistry, Hamedan BranchIslamic Azad UniversityHamedanIran
  2. 2.Young Researchers and Elite Club, Hamedan BranchIslamic Azad UniversityHamedanIran
  3. 3.National Institute of Genetic Engineering and BiotechnologyTehranIran
  4. 4.Department of ChemistryIlam UniversityIlamIran

Personalised recommendations