Environmental Monitoring and Assessment

, Volume 186, Issue 2, pp 907–918 | Cite as

Multivariate assessment of polycyclic aromatic hydrocarbons in surface sediments of the Beijiang, a tributary of the Pearl River in Southern China

  • Mingwei Song
  • Min Gao
  • Panfei Wang
  • Kaizhi Xie
  • Hui Zhang


To estimate the severity of polycyclic aromatic hydrocarbon (PAH) contamination in the upper sediment of the Beijiang River, 42 sediment samples were analyzed for the presence of 16 key PAHs using gas chromatography–mass spectrometry. The concentrations of PAH in the sediment ranged from 44 to 8,921 ng g−1 dry weight. The four- to six-ring PAHs, contributing >50 % to PAHs in 34 of the 42 sites, were the dominant species. Based on a principal component analysis, combined with multivariate linear regression, it became clear that the most important contributors of PAH were fossil fuel combustion (48 %), diesel emissions plus oil spillage (33 %), and coke combustion (19 %). The surface sediments of Beijiang River were grossly contaminated by PAHs mainly derived from combustion.


PAHs Sediments Diagnostic ratio PCA/MLR Source apportionment Beijiang River 



Thanks to financial support from the National Nature Science Foundation of China (41101494) and the Fundamental Research Funds for the Central Universities (2011QC092).


  1. Agarwal, T., Khillare, P., Shridhar, V., & Ray, S. (2009). Pattern, sources and toxic potential of PAHs in the agricultural soils of Delhi, India. Journal of Hazardous materials, 163(2), 1033–1039.CrossRefGoogle Scholar
  2. Bagozzi, R. P., & Yi, Y. (1988). On the evaluation of structural equation models. Journal of the Academy of Marketing Science, 16(1), 74–94.CrossRefGoogle Scholar
  3. Baumard, P., Budzinski, H., & Garrigues, P. (2009). Polycyclic aromatic hydrocarbons in sediments and mussels of the western Mediterranean Sea. Environmental Toxicology and Chemistry, 17(5), 765–776.CrossRefGoogle Scholar
  4. Bixiong, Y., Zhihuan, Z., & Ting, M. (2006). Pollution sources identification of polycyclic aromatic hydrocarbons of soils in Tianjin area, China. Chemosphere, 64(4), 525–534.CrossRefGoogle Scholar
  5. Bouloubassi, I., & Saliot, A. (1993). Investigation of anthropogenic and natural organic inputs in estuarine sediments using hydrocarbon markers (NAH, LAB, PAH). Oceanologica Acta, 16(2), 145–161.Google Scholar
  6. Brown, J. N., & Peake, B. M. (2006). Sources of heavy metals and polycyclic aromatic hydrocarbons in urban stormwater runoff. Science of the Total Environment, 359(1), 145–155.CrossRefGoogle Scholar
  7. Byers, S., Mills, E., & Stewart, P. (1978). A comparison of methods of determining organic carbon in marine sediments, with suggestions for a standard method. Hydrobiologia, 58(1), 43–47. doi: 10.1007/bf00018894.CrossRefGoogle Scholar
  8. Chen, L., Huang, Y., Peng, X., Xu, Z., Zhang, S., Ren, M., et al. (2009). PBDEs in sediments of the Beijiang River, China: levels, distribution, and influence of total organic carbon. Chemosphere, 76(2), 226–231.CrossRefGoogle Scholar
  9. Chung, M. K., Hu, R., Cheung, K. C., & Wong, M. H. (2007). Pollutants in Hong Kong soils: Polycyclic aromatic hydrocarbons. Chemosphere, 67(3), 464–473. doi: 10.1016/j.chemosphere.2006.09.062.CrossRefGoogle Scholar
  10. Dickhut, R., Canuel, E., Gustafson, K., Liu, K., Arzayus, K., Walker, S., et al. (2000). Automotive sources of carcinogenic polycyclic aromatic hydrocarbons associated with particulate matter in the Chesapeake Bay region. Environmental Science & Technology, 34(21), 4635–4640.CrossRefGoogle Scholar
  11. Fu, J., Mai, B., Sheng, G., Zhang, G., Wang, X., Peng, P., et al. (2003). Persistent organic pollutants in environment of the Pearl River Delta, China: An overview. Chemosphere, 52(9), 1411–1422.CrossRefGoogle Scholar
  12. Guo, H., Wang, T., & Louie, P. (2004). Source apportionment of ambient non-methane hydrocarbons in Hong Kong: application of a principal component analysis/absolute principal component scores (PCA/APCS) receptor model. Environmental Pollution, 129(3), 489–498.CrossRefGoogle Scholar
  13. Jiang, Y. F., Wang, X. T., Wang, F., Jia, Y., Wu, M. H., Sheng, G. Y., et al. (2009). Levels, composition profiles and sources of polycyclic aromatic hydrocarbons in urban soil of Shanghai, China. Chemosphere, 75(8), 1112–1118.CrossRefGoogle Scholar
  14. Jing, X., Ming-zhong, R., Gou-yong, D., Zhen-cheng, X., & Su-kun, Z. (2009). Content analysis and assessment of polycyclic aromatic hydrocarbons in surface sediments from Beijaing River, China. Chinese Journal of Enviromental Science, 30(11), 3269–3275.Google Scholar
  15. Kowalkowski, T., Zbytniewski, R., Szpejna, J., & Buszewski, B. (2006). Application of chemometrics in river water classification. Water Research, 40(4), 744–752.CrossRefGoogle Scholar
  16. Li, W. H., Tian, Y. Z., Shi, G. L., Guo, C. S., Li, X., & Feng, Y. C. (2012). Concentrations and sources of PAHs in surface sediments of the Fenhe reservoir and watershed, China. Ecotoxicology and Environmental Safety, 75, 198–206.CrossRefGoogle Scholar
  17. Lichtfouse, É., Budzinski, H., Garrigues, P., & Eglinton, T. I. (1997). Ancient polycyclic aromatic hydrocarbons in modern soils: 13C, 14C and biomarker evidence. Organic Geochemistry, 26(5), 353–359.CrossRefGoogle Scholar
  18. Liu, C. W., Lin, K. H., & Kuo, Y. M. (2003). Application of factor analysis in the assessment of groundwater quality in a blackfoot disease area in Taiwan. Science of the Total Environment, 313(1), 77–89.CrossRefGoogle Scholar
  19. Liu, Y., Chen, L., Huang, Q., Li, W., Tang, Y., & Zhao, J. (2009). Source apportionment of polycyclic aromatic hydrocarbons (PAHs) in surface sediments of the Huangpu River, Shanghai, China. Science of the Total Environment, 407(8), 2931–2938.CrossRefGoogle Scholar
  20. Mai, B. X., Fu, J. M., Sheng, G. Y., Kang, Y. H., Lin, Z., Zhang, G., et al. (2002). Chlorinated and polycyclic aromatic hydrocarbons in riverine and estuarine sediments from Pearl River Delta, China. Environmental Pollution, 117(3), 457–474.CrossRefGoogle Scholar
  21. Men, B., He, M., Tan, L., Lin, C., & Quan, X. (2009). Distributions of polycyclic aromatic hydrocarbons in the Daliao River Estuary of Liaodong Bay, Bohai Sea (China). Marine Pollution Bulletin, 58(6), 818–826.CrossRefGoogle Scholar
  22. Mostafa, A. R., Wade, T. L., Sweet, S. T., Al-Alimi, A. K. A., & Barakat, A. O. (2009). Distribution and characteristics of polycyclic aromatic hydrocarbons (PAHs) in sediments of Hadhramout coastal area, Gulf of Aden, Yemen. Journal of Marine Systems, 78(1), 1–8.CrossRefGoogle Scholar
  23. Ning-jing, H., Xue-fa, S., Ji-hua, L., Peng, H., Ai-mei, Z., & Yan-guang, L. (2010). Distribution and origin of PAHs in the surface sediment of the Yellow River Estuary and it’s adjacent areas. Bulietin of mineralogy, petrology and geochemistry, 2, 157–163.Google Scholar
  24. Ouyang, Y., Nkedi-Kizza, P., Wu, Q., Shinde, D., & Huang, C. (2006). Assessment of seasonal variations in surface water quality. Water Research, 40(20), 3800–3810.CrossRefGoogle Scholar
  25. Pies, C., Hoffmann, B., Petrowsky, J., Yang, Y., Ternes, T. A., & Hofmann, T. (2008). Characterization and source identification of polycyclic aromatic hydrocarbons (PAHs) in river bank soils. Chemosphere, 72(10), 1594–1601. doi: 10.1016/j.chemosphere.2008.04.021.CrossRefGoogle Scholar
  26. Pietzsch, R., Patchineelam, S. R., & Torres, J. P. M. (2010). Polycyclic aromatic hydrocarbons in recent sediments from a subtropical estuary in Brazil. Marine Chemistry, 118(1–2), 56–66.CrossRefGoogle Scholar
  27. Ravindra, K., Sokhi, R., & Van Grieken, R. (2008). Atmospheric polycyclic aromatic hydrocarbons: Source attribution, emission factors and regulation. Atmospheric Environment, 42(13), 2895–2921. doi: 10.1016/j.atmosenv.2007.12.010.CrossRefGoogle Scholar
  28. Ruiz, Y., Suarez, P., Alonso, A., Longo, E., Villaverde, A., & San Juan, F. (2011). Environmental quality of mussel farms in the Vigo estuary: Pollution by PAHs, origin and effects on reproduction. Environmental Pollution, 159(1), 250–265.CrossRefGoogle Scholar
  29. Shukla, V., & Upreti, D. K. (2009). Polycyclic aromatic hydrocarbon (PAH) accumulation in lichen, Phaeophyscia hispidula of DehraDun City, Garhwal Himalayas. Environmental Monitoring and Assessment, 149(1–4), 1–7. doi: 10.1007/s10661-008-0225-6.CrossRefGoogle Scholar
  30. Sienra, M. D. R., Rosazza, N. G., & Préndez, M. (2005). Polycyclic aromatic hydrocarbons and their molecular diagnostic ratios in urban atmospheric respirable particulate matter. Atmospheric Research, 75(4), 267–281. doi: 10.1016/j.atmosres.2005.01.003.CrossRefGoogle Scholar
  31. Simeonov, V., Stratis, J., Samara, C., Zachariadis, G., Voutsa, D., Anthemidis, A., et al. (2003). Assessment of the surface water quality in Northern Greece. Water Research, 37(17), 4119–4124.CrossRefGoogle Scholar
  32. Soclo, H., Garrigues, P., & Ewald, M. (2000). Origin of polycyclic aromatic hydrocarbons (PAHs) in coastal marine sediments: Case studies in Cotonou (Benin) and Aquitaine (France) areas. Marine Pollution Bulletin, 40(5), 387–396.CrossRefGoogle Scholar
  33. Song, M. W., Huang, P., Li, F., Zhang, H., Xie, K. Z., Wang, X. H., et al. (2011). Water quality of a tributary of the Pearl River, the Beijiang, Southern China: Implications from multivariate statistical analyses. Environmental monitoring and assessment, 172(1–4), 589–603.CrossRefGoogle Scholar
  34. Thurston, G. D., & Spengler, J. D. (1985). A quantitative assessment of source contributions to inhalable particulate matter pollution in metropolitan Boston. Atmospheric Environment (1967), 19(1), 9–25.CrossRefGoogle Scholar
  35. Tobiszewski, M., & Namieśnik, J. (2012). PAH diagnostic ratios for the identification of pollution emission sources. Environmental Pollution, 162, 110–119.CrossRefGoogle Scholar
  36. USEPA. (1996a). Method 3540c: Soxhlet extraction. Washington, DC: United States Environmental Protection Agency.Google Scholar
  37. USEPA. (1996b). Method 3620b: Florisil cleanup. Washington, DC.: United States Environmental Protection Agency.Google Scholar
  38. USEPA. (1996c). Method 3660b: Sulfur cleanup. Washington, DC.: United States Environmental Protection Agency.Google Scholar
  39. USEPA. (1996d). Method 8270c: Semivolatile organic compounds by gas chromatography/mass spectrometry (GC/MS). Washington, DC.: United States Environmental Protection Agency.Google Scholar
  40. Wang, C., Wang, W., He, S., Du, J., & Sun, Z. (2011a). Sources and distribution of aliphatic and polycyclic aromatic hydrocarbons in Yellow River Delta Nature Reserve, China. Applied Geochemistry, 26(8), 1330–1336.CrossRefGoogle Scholar
  41. Wang, W., Huang, M.-j., Kang, Y., Wang, H.-s., Leung, A. O., Cheung, K. C., et al. (2011b). Polycyclic aromatic hydrocarbons (PAHs) in urban surface dust of Guangzhou, China: Status, sources and human health risk assessment. Science of the Total Environment, 409(21), 4519–4527.CrossRefGoogle Scholar
  42. Yang, B., Zhou, L., Xue, N., Li, F., Li, Y., Vogt, R. D., et al. (2013). Source apportionment of polycyclic aromatic hydrocarbons in soils of Huanghuai Plain, China: Comparison of three receptor models. Science of the Total Environment, 443, 31–39.CrossRefGoogle Scholar
  43. Yunker, M. B., Macdonald, R. W., Snowdon, L. R., & Fowler, B. R. (2011). Alkane and PAH biomarkers as tracers of terrigenous organic carbon in Arctic Ocean sediments. Organic Geochemistry, 42(9), 1109–1146. doi: 10.1016/j.orggeochem.2011.06.007.Google Scholar
  44. Yunker, M. B., Perreault, A., & Lowe, C. J. (2012). Source apportionment of elevated PAH concentrations in sediments near deep marine outfalls in Esquimalt and Victoria, BC, Canada: Is coal from an 1891 shipwreck the source? Organic Geochemistry, 46, 12–37. doi: 10.1016/j.orggeochem.2012.01.006.CrossRefGoogle Scholar
  45. Zhang, K., Wang, J. Z., Liang, B., & Zeng, E. Y. (2011). Occurrence of polycyclic aromatic hydrocarbons in surface sediments of a highly urbanized river system with special reference to energy consumption patterns. Environmental Pollution, 159(6), 1510–1515.CrossRefGoogle Scholar
  46. Zhang, W., Zhang, S., Wan, C., Yue, D., Ye, Y., & Wang, X. (2008). Source diagnostics of polycyclic aromatic hydrocarbons in urban road runoff, dust, rain and canopy throughfall. Environmental Pollution, 153(3), 594–601.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Mingwei Song
    • 1
  • Min Gao
    • 1
  • Panfei Wang
    • 1
  • Kaizhi Xie
    • 2
  • Hui Zhang
    • 1
    • 3
  1. 1.College of Resources and EnvironmentHuazhong Agricultural UniversityWuhanChina
  2. 2.Institute of Agricultural Resources and EnvironmentGuangdong Academy of Agricultural SciencesGuangzhouChina
  3. 3.Department of Environmental Science, School of Environmental Science and EngineeringSun Yat-sen UniversityGuangzhouChina

Personalised recommendations