Environmental Monitoring and Assessment

, Volume 186, Issue 1, pp 441–456 | Cite as

Spatial characterization of bark beetle infestations by a multidate synergy of SPOT and Landsat imagery

  • Hooman Latifi
  • Bastian Schumann
  • Markus Kautz
  • Stefan Dech


Biological infestations in forests, e.g. the insect outbreaks, have been shown as favoured by future climate change trends. In Europe, the European spruce bark beetle (Ips typographus L.) is one of the main agents causing substantial economic disturbances in forests. Therefore, studies on spatio-temporal characterization of the area affected by bark beetle are of major importance for rapid post-attack management. We aimed at spatially detecting damage classes by combining multidate remote sensing data and a non-parametric classification. As study site served a part of the Bavarian Forest National Park (Germany). For the analysis, we used 10 geometrically rectified scenes of Landsat and SPOT sensors in the period between 2001 and 2011. The main objective was to explore the potential of medium-resolution data for classifying the attacked areas. A further aim was to explore if the temporally adjacent infested areas are able to be separated. The random forest (RF) model was applied using the reference data drawn from high-resolution aerial imagery. The results indicate that the sufficiently large patches of visually identifiable damage classes can be accurately separated from non-attacked areas. In contrast to those, the other mortality classes (current year, current year 1 and current year 2 infested classes) were mostly classified with higher commission or omission errors as well as higher classification biases. The available medium-resolution satellite images, combined with properly acquired reference data, are concluded to be adequate tools to map area-based infestations at advanced stages. However, the quality of reference data, the size of infested patches and the spectral resolution of remotely sensed data are the decisive factors in case of smaller areas. Further attempts using auxiliary height information and spatially enhanced data may refine such an approach.


Bark beetle (Ips typographus L.) Central Europe Random Forest Medium-resolution data Aerial photography 



This study was accomplished using the multidate SPOT data provided by the Planet Action initiative launched by Astrium GEO and SPOT Image. We appreciate the BFNP administration, in particular Dr. Jörg Müller and Dr. Marco Heurich, for providing permission to use the polygon-based infestation data for validation.


  1. Ahern, F.J. (1988). The effects of bark beetle stress on the foliar spectral reflectance of lodgepole pine. International Journal of Remote Sensing, 9(9), 1451–1468.CrossRefGoogle Scholar
  2. Bangdiwala, K. (1987). Using SAS software graphical procedures for the observer agreement chart. In Proceedings of SAS user’s group international conference (Vol. 12, pp. 1083–1088).Google Scholar
  3. Bivand (2013). R-package maptools userguide. Accessed 28 Feb 2013.
  4. Breiman, L. (1984). Classification and regression trees. Wadsworth statistics/probability series. Belmont: Wadsworth International Group.Google Scholar
  5. Breiman, L. (2001). Random forests. Machine Learning, 45, 5–32.CrossRefGoogle Scholar
  6. Breiman, L., & Cutler, A. (2008). Random forests. Tech. rep. Accessed 15 Dec 2012.
  7. Bright, B.C., Hicke, J.A., Hudak, A.T. (2012a). Estimating aboveground carbon stocks of a forest affected by mountain pine beetle in Idaho using lidar and multispectral imagery. Remote Sensing of Environment, 124, 270–281.CrossRefGoogle Scholar
  8. Bright, B.C., Hicke, J.A., Hudak, A.T. (2012b). Landscape-scale analysis of aboveground tree carbon stocks affected by mountain pine beetles in Idaho. Environmental Research Letters, 7, 045,702.CrossRefGoogle Scholar
  9. Coggins, S.B., Coops, N.C., Wulder, M.A. (2010). Estimates of bark beetle infestation expansion factors with adaptive cluster sampling. International Journal of Pest Management, 57(1), 11–21.CrossRefGoogle Scholar
  10. Coggins, S.B., Coops, N.C., Hilker, T., Wulder, M.A. (2013). Augmenting forest inventory attributes with geometric optical modelling in support of regional susceptibility assessments to bark beetle infestations. International Journal of Applied Earth Observation and Geoinformation, 21, 444–452.CrossRefGoogle Scholar
  11. Congalton, R.G. (1991). A review of assessing the accuracy of classifications of remotely sensed data. Remote Sensing of Environment, 37(1), 35–46.CrossRefGoogle Scholar
  12. Coops, N.C., Johnson, M., Wulder, M.A., White, J.C. (2006). Assessment of quickbird high spatial resolution imagery to detect red attack damage due to mountain pine beetle infestation. Remote Sensing of Environment, 103(1), 67–80.CrossRefGoogle Scholar
  13. Dennison, P.E., Brunelle, A.R., Carter, V.A. (2010). Assessing canopy mortality during a mountain pine beetle outbreak using geoeye-1 high spatial resolution satellite data. Remote Sensing of Environment, 114(11), 2431–2435.CrossRefGoogle Scholar
  14. Edburg, S., Hicke, J., Brooks, P., Pendall, E., Ewers, B., Norton, U., Gochis, D., Gutmann, E., Meddens, A. (2012). Cascading impacts of bark beetle-caused tree mortality on coupled biogeophysical and biogeochemical processes. Frontiers in Ecology and the Environment, 10(8), 416–424.CrossRefGoogle Scholar
  15. Fassnacht, F.E., Latifi, H., Koch, B. (2012). An angular vegetation index for imaging spectroscopy data: preliminary results on forest damage detection in the Bavarian National Park, Germany. International Journal of Applied Earth Observation and Geoinformation, 19, 308–321.CrossRefGoogle Scholar
  16. Franklin, S.E., Wulder, M.A., Skakun, R.S., Carroll, A.L. (2003). Mountain pine beetle red-attack forest damage classification using stratified Landsat TM data in British Columbia, Canada. Photogrammetric Engineering and Remote Sensing, 69(3), 283–288.CrossRefGoogle Scholar
  17. Gregoire, J.C., & Evans, H. (2004). Damage and control of bawbilt organisms an overview. In F. Lieutier, K.R. Day, A. Battisti, J.C. Gregoire, H.F. Evans (Eds.), Bark and wood boring insects in living trees in Europe, a synthesis (pp. 19–37). Springer Netherlands.Google Scholar
  18. Heurich, M., Fahse, L., Reinelt, A. (2001). Die buchdruckermassenvermehrung im nationalpark bayerischer wald. In Waldentwicklung im bergwald nach windwurf und borkenkäferbefall. Tech. rep., Wissenschaftliche Schriftenreihe der Nationalparkverwaltung Bayerischer Wald. Band 16.Google Scholar
  19. Heurich, M., Ochs, T., Andresen, T., Schneider, T. (2010). Object-orientated image analysis for the semi-automatic detection of dead trees following a spruce bark beetle (Ips typographus) outbreak. European Journal of Forest Research, 129, 313–324.CrossRefGoogle Scholar
  20. Hicke, J., & Logan, J. (2009). Mapping whitebark pine mortality caused by a mountain pine beetle outbreak with high spatial resolution satellite imagery. International Journal of Remote Sensing, 30(17), 4427–4441.CrossRefGoogle Scholar
  21. Hicke, J.A., Allen, C.D., Desai, A.R., Dietze, M.C., Hall, R.J., (Ted) Hogg, E.H., Kashian, D.M., Moore, D., Raffa, K.F., Sturrock, R.N., Vogelmann, J. (2012). Effects of biotic disturbances on forest carbon cycling in the United States and Canada. Global Change Biology, 18(1), 7–34.CrossRefGoogle Scholar
  22. Hijmans, R., & Van Etten, J. (2012). R-package Raster userguide. R Development Core Team. Accessed 28 February 2013.
  23. Hudak, A.T., Crookston, N.L., Evans, J.S., Hall, D.E., Falkowski, M.J. (2008). Nearest neighbor imputation of species-level, plot-scale forest structure attributes from LiDAR data. Remote Sensing of Environment, 112(5), 2232–2245. Earth Observations for Terrestrial Biodiversity and Ecosystems Special Issue.CrossRefGoogle Scholar
  24. Jactel, H., & Vodde, F. (2011). Prevalence of biotic and abiotic hazards in European forests. Tech. Rep. 86, EFI Technical Report 66. European Forest Institute.Google Scholar
  25. Kautz, M., Dworschak, K., Gruppe, A., Schopf, R. (2011). Quantifying spatio-temporal dispersion of bark beetle infestations in epidemic and non-epidemic conditions. Forest Ecology and Management, 262(4), 598–608.CrossRefGoogle Scholar
  26. Keitt, T., Rowlingson, B., Bivand, R. (2013). R package rgdal userguide. Accessed 28 Feb 2013.
  27. Klein, W. (1982). Estimating bark beetle-killed lodgepole pine with high altitude panoramic photography. Photogrammetric Engineering and Remote Sensing, 48, 733–737.Google Scholar
  28. Koski, V., Skroppa, T., Paule, L., Wolf, H., Turok, J. (1997). Technical guidelines for genetic conservation of Norway spruce (Picea abies (L.) Karst.). Tech. rep., European Forest Genetic Ressources Programme.Google Scholar
  29. Kurz, W.A., Dymond, C.C., Stinson, G., Rampley, G.J., Neilson, E.T., Carroll, A.L., Ebata, T., Safranyik, L. (2008). Mountain pine beetle and forest carbon feedback to climate change. Nature, 452(7190), 987–990.CrossRefGoogle Scholar
  30. Latifi, H., & Koch, B. (2012). Evaluation of most similar neighbour and random forest methods for imputing forest inventory variables using data from target and auxiliary stands. International Journal of Remote Sensing, 33(21), 6668–6694.CrossRefGoogle Scholar
  31. Latifi, H., Fassnacht, F., Koch, B. (2012). Forest structure modeling with combined airborne hyperspectral and LiDAR data. Remote Sensing of Environment, 121(0), 10–25.CrossRefGoogle Scholar
  32. Lausch, A., Fahse, L., Heurich, M. (2011). Factors affecting the spatio-temporal dispersion of Ips typographus (L.) in Bavarian Forest National Park: a long-term quantitative landscape-level analysis. Forest Ecology and Management, 261(2), 233–245.CrossRefGoogle Scholar
  33. Leica Geosystems (2002). Stereo analyst user’s guide. Leica Geosystems GIS & Mapping Division, Atlanta, GA, USA.Google Scholar
  34. Liaw, A., & Wiener, M. (2012). R-package random forest userguide. R Development Core Team. Accessed 28 February 2013.
  35. Marx, A. (2010). Detection and classification of bark beetle infestation in pure norway spruce stands with multi-temporal rapideye imagery and data mining techniques. PFG Photogrammetrie, Fernerkundung, Geoinformation, 2010(4), 243–252.CrossRefGoogle Scholar
  36. Meddens, A.J., Hicke, J.A., Vierling, L.A. (2011). Evaluating the potential of multispectral imagery to map multiple stages of tree mortality. Remote Sensing of Environment, 115(7), 1632–1642.CrossRefGoogle Scholar
  37. Meddens, A.J., Hicke, J.A., Vierling, L.A., Hudak, A.T. (2013). Evaluating methods to detect bark beetle-caused tree mortality using single-date and multi-date Landsat imagery. Remote Sensing of Environment, 132, 49–58.CrossRefGoogle Scholar
  38. Meigs, G.W., Kennedy, R.E., Cohen, W.B. (2011). A Landsat time series approach to characterize bark beetle and defoliator impacts on tree mortality and surface fuels in conifer forests. Remote Sensing of Environment, 115(12), 3707–3718.CrossRefGoogle Scholar
  39. Meyer, D., Zeileis, A., Hornik, K., Friendly, M. (2012). R-package vcd userguide. R Development Core Team. http:// Accessed 28 February 2013.
  40. Mitchell, M. (2011). Bias of random forest out-of-bag (OOB) error for certain input parameters. Open Journal of Statistics, 1, 205–211.CrossRefGoogle Scholar
  41. Moravec, I., Cudlin, P., Polak, T., Havlicek, F. (2002). Spruce bark beetle (Ips typographus L.) infestation and norway spruce status: is there a causal relationship? Wiss Mitt Bohmerwald, 8, 255–264.Google Scholar
  42. Pebesma et al. (2012). R-package sp userguide. R Development Core Team. Accessed 28 February 2013.
  43. Pfeifer, E.M., Hicke, J.A., Meddens, A., Arjan, J.H. (2011). Observations and modeling of aboveground tree carbon stocks and fluxes following a bark beetle outbreak in the western United States. Global Change Biology, 17(1), 339–350.CrossRefGoogle Scholar
  44. R Development Core Team (2011). R: a language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. Accessed 25 Nov 2012.
  45. Rall, H., & Martin, K. (2002). Luftbildauswertung zur waldentwicklung im nationalpark bayerischer wald 2001. Tech. rep., Administration of NP Bavarian Forest (Ed.), Berichte aus dem Nationalpark, 1.Google Scholar
  46. Röder, J., Ortiz, S., Lyytikäinen-Saarenmaa, P., Holopainen, M., Hyypää, J., Karjalainen, M., Koch, B. (2009). EO application development data user element, due innovators ii—insect combat. Deliverable 2. project: Esrin/ao/1-5781/08/i-ec, Deliverable 2. Project: ESRIN/AO/1-5781/08/I-EC.Google Scholar
  47. Skakun, R.S., Wulder, M.A., Franklin, S.E. (2003). Sensitivity of the thematic mapper enhanced wetness difference index to detect mountain pine beetle red-attack damage. Remote Sensing of Environment, 86(4), 433–443.CrossRefGoogle Scholar
  48. Svetnik, V., Liaw, A., Tong, C., Culberson, J.C., Sheridan, R.P., Feuston, B.P. (2003). Random forest: a classification and regression tool for compound classification and qsar modeling. Journal of Chemical Information and Computer Sciences, 43(6), 1947–1958.CrossRefGoogle Scholar
  49. Tinker, D.B., & Knight, D.H. (2000). Coarse woody debris following fire and logging in Wyoming lodgepole pine forests. Ecosystems, 3, 472–483.CrossRefGoogle Scholar
  50. Vogelmann, J.E., Tolk, B., Zhu, Z. (2009). Monitoring forest changes in the southwestern United States using multitemporal Landsat data. Remote Sensing of Environment, 113(8), 1739–1748.CrossRefGoogle Scholar
  51. Wallace, J., Li, M., Traylen, A. (2009). Forest vegetation monitoring and runoff in water supply catchments affected by drying climate. In Geoscience and remote sensing symposium, 2009 IEEE international, IGARSS 2009 (Vol. 3, pp. III–939–III–942).Google Scholar
  52. Wermelinger, B. (2004). Ecology and management of the spruce bark beetle Ips typographus—a review of recent research. Forest Ecology and Management, 202(1–3), 67–82.CrossRefGoogle Scholar
  53. White, J., & Wulder, M. (2006). Detecting and mapping mountain pine beetle red-attack damage with SPOT-5 10-M multispectral imagery. Mountain Pine Beetle Initiative Working Paper Series, Pacific Forestry Centre.Google Scholar
  54. Wulder, M., White, J., Bentz, B., Alvarez, M., Coops, N. (2006). Estimating the probability of mountain pine beetle red-attack damage. Remote Sensing of Environment, 101(2), 150–166.CrossRefGoogle Scholar
  55. Wulder, M.A., Dymond, C.C., White, J.C. (2005). Remote sensing in the survey of mountain pine beetle impacts: review and recommendations. Information report bc-x-401., Natural Resources Canada, Canadian Forest Service, Pacific Forestry Centre.Google Scholar
  56. Wulder, M.A., White, J.C., Carroll, A.L., Coops, N.C. (2009). Challenges for the operational detection of mountain pine beetle green attack with remote sensing. The Forestry Chronicle, 85(1), 32–38. Scholar
  57. Xie, Y., Sha, Z., Yu, M. (2008). Remote sensing imagery in vegetation mapping: a review. Journal of Plant Ecology, 1(1), 9–23. Scholar
  58. Yu, X., Hyypp, J., Vastaranta, M., Holopainen, M., Viitala, R. (2011). Predicting individual tree attributes from airborne laser point clouds based on the random forests technique. ISPRS Journal of Photogrammetry and Remote Sensing, 66(1), 28–37.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Hooman Latifi
    • 1
  • Bastian Schumann
    • 1
  • Markus Kautz
    • 2
  • Stefan Dech
    • 1
    • 3
  1. 1.Department of Remote Sensing in cooperation with German Aerospace Center (DLR)University of WürzburgWürzburgGermany
  2. 2.Institute of Animal EcologyTechnische Universität MünchenFreisingGermany
  3. 3.German Remote Sensing Data Center, German Aerospace CenterWeßlingGermany

Personalised recommendations