Environmental Monitoring and Assessment

, Volume 186, Issue 1, pp 307–324 | Cite as

Application of the positive matrix factorization approach to identify heavy metal sources in sediments. A case study on the Mexican Pacific Coast

  • C. González-Macías
  • G. Sánchez-Reyna
  • L. Salazar-Coria
  • I. Schifter


During the last two decades, sediments collected in different sources of water bodies of the Tehuantepec Basin, located in the southeast of the Mexican Pacific Coast, showed that concentrations of heavy metals may pose a risk to the environment and human health. The extractable organic matter, geoaccumulation index, and enrichment factors were quantified for arsenic, cadmium, copper, chromium, nickel, lead, vanadium, zinc, and the fine-grained sediment fraction. The non-parametric SiZer method was applied to assess the statistical significance of the reconstructed metal variation along time. This inference method appears to be particularly natural and well suited to temperature and other environmental reconstructions. In this approach, a collection of smooth of the reconstructed metal concentrations is considered simultaneously, and inferences about the significance of the metal trends can be made with respect to time. Hence, the database represents a consolidated set of available and validated water and sediment data of an urban industrialized area, which is very useful as case study site. The positive matrix factorization approach was used in identification and source apportionment of the anthropogenic heavy metals in the sediments. Regionally, metals and organic matter are depleted relative to crustal abundance in a range of 45–55 %, while there is an inorganic enrichment from lithogenous/anthropogenic sources of around 40 %. Only extractable organic matter, Pb, As, and Cd can be related with non-crustal sources, suggesting that additional input cannot be explained by local runoff or erosion processes.


Positive matrix factorization Marine sediments Metals Tehuantepec Basin 


  1. Birch, G. F., Evenden, D., & Teutsch, M. E. (1996). Dominance of point source in heavy metal distributions in sediments of a major Sydney estuary (Australia). Environmental Geology, 28, 169–174.CrossRefGoogle Scholar
  2. Breslin, V. T., & Duedall, I. W. (1988). Vanadium release from stabilized oil ash waste in seawater. Environmental Science and Technology, 22, 1166–1170.CrossRefGoogle Scholar
  3. Çevik, F., Lugal-Göksu, M. Z., Deric, O. B., & Fındık, Ö. (2011). An assessment of metal pollution in surface sediments of Seyhan Dam by using enrichment factor, geoaccumulation index and statistical analyses. Environmental Monitoring and Assessment, 152, 309–317.CrossRefGoogle Scholar
  4. Chaudhuri, P., & Marron, J. S. (1999). SiZer for exploration of structure in curves. Journal of the American Statistical Association, 94, 807–823.Google Scholar
  5. Chelton, D. F., Freilich, M. H., & Esbensen, S. K. (2000). Satellite observations of the wind jets off the Pacific Coast of Central America. Part II: regional relationships and dynamical considerations. Monthly Weather Review, 128, 2019–2043.CrossRefGoogle Scholar
  6. Chow, J. C., & Watson, J. G. (2002). Review of PM2.5 and PM10 apportionment for fossil fuel combustion and other sources by the chemical mass balance receptor model. Energy and Fuels, 16, 222–260.CrossRefGoogle Scholar
  7. Chueinta, W., & Hopke, P. K., & Paatero, P. (2000). Investigation of sources of atmospheric aerosol at urban and suburban residential areas in Thailand by positive matrix factorization. Atmospheric Environment, 34, 3319–3329.Google Scholar
  8. Chung, H. Y., Lee, K. W., & Koo, J. Y. (1996). A note on bootstrap model selection criterion. Statistic Probability Letters, 26, 35–41.CrossRefGoogle Scholar
  9. Comero, A., Locoro, G., Free, G., Vaccaro, S., De Capitani, L., & Gawlik, B. M. (2011). Characterization of Alpine lake sediments using multivariate statistical techniques. Chemometrics and Intelligent Laboratory Systems, 107, 24–30.CrossRefGoogle Scholar
  10. Denton, G. R. W., Wood, H. R., Concepcion, L. P., Siegrist, H. G., Eflin, V. S., Narcis, D. K., & Pangelinan, G. T. (1997). Analysis of in-place contaminants in marine sediments from four harbor locations on Guam: a pilot study. Mangilao: Water and Environmental Research Institute of the Western Pacific, Technical Report No. 87, University of Guam.Google Scholar
  11. Denton, G. R. W., Bearden, B. G., Concepcion, L. P., Siegrist, H. G., Vann, D. T., & Wood, H. R. (2001). Contaminant assessment of surface sediments from Tanapag Lagoon, Saipan. Mangilao: Water and Environmental Research Institute of the Western Pacific, Technical Report No. 93, University of Guam.Google Scholar
  12. Finkelman, R. B. (2005). Sources and health effects of metals and trace elements in our environment: an overview. In T. A. Moore, A. Black, J. A. Centeno, J. S. Harding, & D. A. Trumm (Eds.), Metal contaminants in New Zealand (pp. 25–46). Christchurch: Resolution Press.Google Scholar
  13. Galloway, J. N., Eisenreich, S. J., & Scott, B. C. (1980). Toxic substances in atmospheric deposition: a review and assessment. National Atmospheric Deposition Program, Report, NC-141.Google Scholar
  14. Geffard, O., Geffard, A., His, E., & Budzinski, H. (2003). Assessment of the bioavailability and toxicity of sediment associated polycyclic aromatic hydrocarbons and heavy metals applied to Crassostrea gigas embryos and larvae. Marine Pollution Bulletin, 46, 481–490.CrossRefGoogle Scholar
  15. Ghrefat, H. A., Rukah, Y. A., & Rosen, M. A. (2011). Application of geoaccumulation index and enrichment factor for assessing metal contamination in the sediments of Kafrain Dam, Jordan. Environmental Monitoring and Assessment, 178, 95–109.CrossRefGoogle Scholar
  16. González-Fernández, D., Garrido-Pérez, M. C., Nebot-Sanz, E., & Sales-Márquez, D. (2011). Source and fate of heavy metals in marine sediments from a semi-enclosed deep embayment subjected to severe anthropogenic activities. Water Air Soil Pollution, 221, 191–202.CrossRefGoogle Scholar
  17. González-Macías, C., Schifter, I., Lluch-Cota, D. B., Méndez-Rodríguez, L., & Hernández-Vázquez, S. (2006). Distribution, enrichment and accumulation of heavy metals in coastal sediments of Salina Cruz Bay, México. Environmental Monitoring and Assessment, 118, 211–230.CrossRefGoogle Scholar
  18. González-Macías, C., Schifter, I., Lluch-Cota, D. B. M., Rodríguez, L., & Hernández-Vázquez, S. (2009). Assessment of benthic changes during 20 years of monitoring of the Mexican Salina Cruz Bay. Environmental Monitoring and Assessment, 149, 113–132.CrossRefGoogle Scholar
  19. Henry, R. C., Lewis, C. W., Hopke, P. K., & Williamson, H. J. (1984). Review of receptor model fundamentals. Atmospheric Environment A, 18, 1507–1515.CrossRefGoogle Scholar
  20. Henry, R. C. (1997). History and fundamentals of multivariate air quality receptor models. Chemometrics and Intelligent Laboratory Systems, 37, 37–42.CrossRefGoogle Scholar
  21. Hernandez, H., & Rodriguez, R. (2012). Geochemical evidence for the origin of vanadium in an urban environment. Environmental Monitoring and Assessment, 184, 5327–5342.CrossRefGoogle Scholar
  22. Hornberger, M. I., Luoma, S. N., Cain, D. J., Parchaso, F., Brown, C. L., Bouse, R. M., Wellise, C., & Thompson, J. K. (2000). Linkage of bioaccumulation and biological effects to changes in pollutant loads in South San Francisco Bay. Environmental Science and Technology, 12, 2401–2409.CrossRefGoogle Scholar
  23. Huang, S., & Conte, M. H. (2009). Source/process apportionment of major and trace elements in sinking particles in the Sargasso Sea. Geochimica et Cosmochimica Acta, 73, 65–90.CrossRefGoogle Scholar
  24. Imamoglu, I., & Christensen, E. R. (2002). PCB sources, transformations, and contributions in recent Fox River, Wisconsin, sediments determined from receptor modeling. Water Research, 36, 3449–3462.CrossRefGoogle Scholar
  25. Karlsson, J., Ytreberg, E., & Eklund, B. (2010). Toxicity of anti-fouling paints for use on ships and leisure boats to non-target organisms representing three trophic levels. Environmental Pollution, 158, 681–687.CrossRefGoogle Scholar
  26. Kim, E., & Hopke, P. K. (2005). Identification of fine particle sources in mid-Atlantic US area. Water Air and Soil Pollution, 168, 391–421.CrossRefGoogle Scholar
  27. Kosmehl, T., Hallare, A. V., Braunbeck, T., & Hollert, H. (2008). DNA damage induced by genotoxicants in zebrafish (Danio rerio) embryos after contact exposure to freeze-dried sediment and sediment extracts from Laguna Lake (the Philippines) as measured by the comet assay. Mutation Research, 650, 1–14.CrossRefGoogle Scholar
  28. López-Garrido, P.A., Bautista Galicia, N. (2008). Diagnóstico de la contaminación del agua en el estado de Oaxaca. Pan American Health Organization, Virtual Library of Sustainable Development and Environmental Health. http://www.bvsde.paho.org/bvsaidis/saneab/mexicona/R-0157.pdf.
  29. Mai, B., Qi, S., Zeng, E. Y., Yang, Q., Zhang, G., Fu, J., Sheng, G., & Wang, Z. (2003). Distribution of polycyclic aromatic hydrocarbons in the coastal region off Macao, China: assessment of input sources and transport pathways using compositional analysis. Environmental Science and Technology, 37, 4855–486.CrossRefGoogle Scholar
  30. Mooibroek, D., Hoogerbrugge, R., & Bloemen, H.J.Th. (2007). Implementation of source apportionment using positive matrix factorization. Application of the Palookaville exercise. National Institute for Public Health and the Environment, RIVM Report 863001006/2007. The Netherlands.Google Scholar
  31. Moore, J. W. (1991). Inorganic contaminants of surface water: Research and monitoring priorities. New York: Springer.CrossRefGoogle Scholar
  32. Muñoz-Barbosa, A., Gutiérrez-Galindo, E. A., Daesslé, L. W., Orozco-Borbón, M. V., & Segovia-Zavala, J. A. (2012). Relationship between metal enrichments and a biological adverse effects index in sediments from Todos Santos Bay, northwest coast of Baja California, México. Marine Pollution Bulletin, 64, 405–409.CrossRefGoogle Scholar
  33. Muller, G. (1969). Index of geo-accumulation in sediments of the Rhine River. Geojournal, 2, 108–118.Google Scholar
  34. Nolting, R. F., Ramkema, A., & Everaats, J. M. (1999). The geochemistry of Cu, Cd, Zn, Ni and Pb in sediment cores from the continental slope of the Banc d'Arguin (Mauritania). Continental Shelf Research, 19, 665–691.CrossRefGoogle Scholar
  35. Paatero, P., & Tapper, U. (1994). Positive matrix factorization: a non-negative factor model with optimal utilization of error estimates of data values. Environmetrics, 5, 111–126.CrossRefGoogle Scholar
  36. Paatero, P., Hopkeb, P. K., Song, X., & Ramadan, Z. (2002). Understanding and controlling rotations in factor analytic models. Chemometrics and Intelligent Laboratory Systems, 60, 253–264.CrossRefGoogle Scholar
  37. Paatero, P., Hopkeb, P. K., Begumb, B. A., & Biswasc, S. K. (2005). A graphical diagnostic method for assessing the rotation in factor analytical models of atmospheric pollution. Atmospheric Environment, 39, 193–201.CrossRefGoogle Scholar
  38. Park, C., Marron, J. S., & Rondonotti, V. (2004). Dependent SiZer: goodness of fit tests for time series models. Journal of Applied Statistics, 31, 999–1017.CrossRefGoogle Scholar
  39. Pekey, H. (2006). The distribution and sources of heavy metals in Izmit Bay surface sediments affected by a polluted stream. Marine Pollution Bulletin, 52, 1197–1208.CrossRefGoogle Scholar
  40. Peré-Trepat, E., Ginebreda, A., & Tauler, R. (2007). Comparison of different multiway methods for the analysis of geographical metal distributions in fish, sediments, and river waters in Catalonia. Chemometrics and Intelligent Laboratory Systems, 88, 69–83.CrossRefGoogle Scholar
  41. Polissar, A. V., Hopke, P. K., Paatero, P., Malm, W. C., & Sisler, J. F. (1998). Atmospheric aerosol over Alaska 2. Elemental composition and sources, Journal of Geophysical Research, 103, 19045–19057.CrossRefGoogle Scholar
  42. Polissar, A. V., Hopke, P. K., & Poirot, R. L. (2001). Atmospheric aerosol over Vermont: chemical composition and sources. Environmental Science and Technology, 35, 4604–4621.CrossRefGoogle Scholar
  43. Reff, A., Eberly, S. I., & Bhave, P. V. (2007). Receptor modeling of ambient particulate matter data using positive matrix factorization: review of existing methods. Journal of the Air and Waste Management Association, 57, 146–154.CrossRefGoogle Scholar
  44. Ruiz-Fernández, A. C., Páez-Osuna, F., Machain-Castillo, M. L., & Arellano-Torres, E. (2004). 210Pb geochronology and trace metal fluxes (Cd, Cu and Pb) in the Gulf of Tehuantepec, South Pacific of Mexico. Journal of Environmental Radioactivity, 76, 161–175.CrossRefGoogle Scholar
  45. Ruiz-Fernández, A. C., Hillaire-Marcel, C., de Vernal, A., Machain-Castillo, M. L., Vásquez, L., Ghaleb, B., Aspiazu-Fabián, J. A., & Páez-Osuna, F. (2009). Changes of coastal sedimentation in the Gulf of Tehuantepec, South Pacific Mexico, over the last 100 years from short-lived radionuclide measurements. Estuarine, Coastal and Shelf Science, 82, 525–536.CrossRefGoogle Scholar
  46. Sakurai, T. (2003). Dioxins in aquatic sediment and soil in the Kanto region of Japan: major sources and their contributions. Environmental Science and Technology, 37, 3133–3140.CrossRefGoogle Scholar
  47. Salau, J. S. I., Tauler, R., Bayona, J. M., & Tolosa, I. (1997). Input characterization of sedimentary organic contaminants and molecular markers in the northwestern Mediterranean Sea by exploratory data analysis. Environmental Science and Technology, 31, 3482–3490.CrossRefGoogle Scholar
  48. Salazar-Coria, L., Schifter, I., & González-Macias, C. (2010). Weighing the evidence of ecological risk from PAHs contamination in the estuarine environment of Salina Cruz, Bay, Mexico. Environmental Monitoring and Assessment, 162, 387–406.CrossRefGoogle Scholar
  49. Schifter, I., González-Macias, C., Salazar-Coria, L., & González-Lozano, C. (2011). Pollution in estuarine and bay sediments at a refinery complex located on the Mexican Pacific Ocean. International Journal of Environmental Studies, 68, 83–106.CrossRefGoogle Scholar
  50. Secretarìa de Energìa (2009). Oil products outlook 2007–16. Available at http://www.sener.gob.mx/res/PE_y_DT/pub/Propect%20Petroliferos%20ult.pdf
  51. Simeonov, V., Massart, D. L., Andreev, G., & Tsakovski, S. (2000). Assessment of metal pollution based on multivariate statistical modeling of “hot spot” sediments from the Black Sea. Chemosphere, 41, 1411–1417.CrossRefGoogle Scholar
  52. Simeonov, V., Stanimirova, I., & Tsakovski, S. (2001). Multivariate statistical interpretation of coastal sediment monitoring data. Fresenius Journal Analytical Chemistry, 370, 719–722.CrossRefGoogle Scholar
  53. Sofowote, U. M., McCarry, B. E., & Marvin, C. H. (2008). Source apportionment of PAH in Hamilton Harbour suspended sediments: comparison of two factor analysis methods. Environmental Science and Technology, 42, 6007–6014.CrossRefGoogle Scholar
  54. Song, X. H., Polissar, S. V., & Hopke, P. K. (2001). Sources of fine particle compositions in the northeastern US. Atmospheric Environment, 35, 5277–5286.CrossRefGoogle Scholar
  55. Stanimirova, I., Tsakovski, S., & Simenov, V. (1999). Multivariate statistical analysis of coastal sediment data. Fresenius Journal Analytical Chemistry, 365, 489–493.CrossRefGoogle Scholar
  56. Statistica. (1998). Statistica for Windows (volume I). General conventions and statistics I (2nd ed.). Tulsa: StatSoft, Inc.Google Scholar
  57. Sundqvist, K. L., Tysklin, T. M., Geladi, P., Hopke, P. K., & Wiberg, K. (2010). PCDD/F source apportionment in the Baltic Sea using positive matrix factorization. Environmental Science and Technology, 44, 1690–1697.CrossRefGoogle Scholar
  58. Szefer, P., Glosby, G. P., Szefer, K., Penopkowiak, J., & Kaliszan, R. (1996). Heavy metal pollution in surficial sediments from the Southern Baltic Sea off Poland. Journal Environmental Science Health, 31, 2723–2754.CrossRefGoogle Scholar
  59. Taylor, S. R. (1964). Abundance of chemical elements in the continental crust; a new table. Geochimica Cosmochimica Acta, 28, 1273–1285.CrossRefGoogle Scholar
  60. United States Environmental Protection Agency (USEPA). (1978). Test method for evaluating total recoverable petroleum hydrocarbon, method 418.1 (spectrophotometric, infrared). Washington, DC: U.S. Government Printing Office.Google Scholar
  61. United States Environmental Protection Agency (USEPA). (1996). Method 8440, total recoverable petroleum hydrocarbon by infrared spectrophotometry (3rd ed.). Washington, DC: Revision-0. U.S. Government Printing Office. SW-846.Google Scholar
  62. Whitmore, T. J., Riedinger-Whitmore, M. A., Smoak, J. M., Kolasa, K. V., Goddard, E. A., & Bindler, R. (2008). Arsenic contamination of lake sediments in Florida: evidence of herbicide mobility from watershed soils. Journal of Paleolimnology, 40, 869–884.CrossRefGoogle Scholar
  63. Zhou, F., Guo, H., & Liu, L. (2007). Quantitative identification and source apportionment of anthropogenic heavy metals in marine sediment of Hong Kong. Environmental Geology, 53, 295–305.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • C. González-Macías
    • 1
  • G. Sánchez-Reyna
    • 1
  • L. Salazar-Coria
    • 1
  • I. Schifter
    • 1
  1. 1.Dirección de Seguridad y Medio AmbienteInstituto Mexicano del PetróleoMéxicoMexico

Personalised recommendations