Environmental Monitoring and Assessment

, Volume 186, Issue 1, pp 19–33 | Cite as

Nutrient baselines of Cerrado low-order streams: comparing natural and impacted sites in Central Brazil

  • Bárbara Medeiros Fonseca
  • Luciana de Mendonça-Galvão
  • Claudia Padovesi-Fonseca
  • Lucijane Monteiro de Abreu
  • Adriana Cristina Marinho Fernandes


The aquatic systems responsible for water supply in the Brazilian Federal District (FD) have been threatened by anthropogenic pressures, especially considering the expressive demographic increase in the region during the last decades. The purposes of this research were: (a) to assess the water quality in streams located in the FD by monitoring physical–chemical variables; (b) to define baselines for these variables among different ecological status categories. The 14 investigated streams were sampled between 2006 and 2009, in the dry (August–September, 2006, 2008, 2009) and rainy (March–April, 2008, 2009) seasons. All sampling sites were classified in four categories (“very impacted”, “impacted”, “in transition” and “natural”) using an adaptation of a rapid habitat assessment protocol. Differences in water quality among sites were generally well predicted in the four ecological status categories defined by the protocol, which showed a gradient in nutrient concentrations from reference sites classified as “natural” (medians: electrical conductivity = 7.3 μS cm−1; nitrate = 0.040 mg L−1; ammonium = 0.039 mg L−1; soluble reactive phosphorus (SRP) = <0.001 mg L−1; total phosphorus (TP) = 0.006 mg L−1; ) to those classified as “very impacted” (medians: electrical conductivity = 87.7 μS cm−1; nitrate = 0.247 mg L−1; ammonium = 0.219 mg L−1; SRP = 0.010 mg L−1; TP = 0.035 mg L−1). Point sources inputs were the main factor for water quality deterioration. The nutrient baselines reported were relatively low when compared to data collected from reference areas in Brazil (e.g., São Paulo State) or temperate regions, especially for TP.


Monitoring Nutrients Reference conditions Savanna Tropical limnology 



This work was supported by Fundo Nacional do Meio Ambiente (FNMA) (Process 02000.005571/2005-89). We thank the Catholic University of Brasília (UCB) for the scholarships granted to undergraduate students and for the chemical analyses (especially to the environmental engineers Rafael Morgado and Rodrigo Zolini); the Department of Ecology of the University of Brasília (UnB) for the transport during field work, especially the driver Mr. Mardônio Timo; the administration and staff of Águas Emendadas Ecological Station for their support within this conservation unit. We are also grateful to colleagues involved in field and laboratory work, specially the undergraduate students.


  1. Alencar, D. B. S., Silva, C. L., & Oliveira, C. A. S. (2006). Influência da precipitação no escoamento superficial de uma microbacia hidrográfica do Distrito Federal. Engenharia Agrícola, 26(1), 103–112 (in Portuguese).CrossRefGoogle Scholar
  2. Alves, R. I. S., Cardoso, O. O., Tonani, K. A., Julião, F. C., Trevilato, T. M. B., & Segura-Muñoz, S. I. (2013). Water quality of the Ribeirão Preto Stream, a watercourse under anthropogenic influence in the southeast of Brazil. Environmental Monitoring and Assessment, 185, 1151–1161.CrossRefGoogle Scholar
  3. APHA. (2005). Standard Methods for the Examination of water and wastewater (21st ed.). Washington, DC: American Public Health Association.Google Scholar
  4. ANA. Water National Agency. (2012). Available at Accessed 19 Jan 2012 (in Portuguese).
  5. Barbour, M.T., Gerritsen, J., Snyder, B.D., Stribling, J.B. (1999). Rapid bioassessment protocols for use in streams and wadeable rivers: periphyton, benthic macroinvertebrates and fish, 2nd ed. EPA 841-B-99-002. Washington, DC: U.S. Environmental Protection Agency; Office of Water.Google Scholar
  6. Biggs, T. W., Dune, T., & Martinelli, L. A. (2004). Natural controls and human impacts on stream nutrient concentrations in a deforested region of the Brazilian Amazon basin. Biogeochemistry, 68, 227–257.CrossRefGoogle Scholar
  7. Bispo, F. H. A., Silva, A. C., & Torrado, P. V. (2011). Highlands of the upper Jequitinhonha Valley. Brazil. I. Characterization and classification. Revista Brasileira de Ciência do Solo, 35, 1069–1080.Google Scholar
  8. Brasil (2005). Resolution no. 357, March 17th 2005. Brazilian Council for the Environment (CONAMA). Accessed 30 June 2013 (in Portuguese).
  9. Bustamante, M. M. C., Nardoto, G. B., Pinto, A. S., Resende, J. C. F., Takahashi, F. S. C., & Vieira, L. C. G. (2012). Potential impacts of climate change on biogeochemical functioning of Cerrado ecosystems. Brazilian Journal of Biology, 72, 655–671.CrossRefGoogle Scholar
  10. CAESB. Environmental Sanitation Company of the Federal District. (2011). Accessed 15 Dec 2011 (in Portuguese).
  11. Carmo, M. S., Boaventura, G. R., & Oliveira, E. C. (2005). Geoquímica das águas da Bacia Hidrográfica do Rio Descoberto, Brasília/DF – Brasil. Química Nova, 28(4), 565–574 (in Portuguese).CrossRefGoogle Scholar
  12. Carneiro, P. J. R., Maldaner, V. I., Alves, P. F., Queirós, I. A., Mauriz, T. V., & Pacheco, R. F. (2007). Evolução do uso da água na bacia do rio Preto no Distrito Federal. Revista Espaço & Geografia, 10(2), 325–353 (in Portuguese).Google Scholar
  13. Carpenter, S. R., Caraco, N. F., Correll, D. L., Howarth, R. W., Sharpley, A. N., & Smith, V. H. (1998). Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecological Applications, 8(3), 559–568.CrossRefGoogle Scholar
  14. Carvalho, P. R. S. (2005). A expansão urbana na bacia do ribeirão Mestre D’Armas (DF) e a qualidade da água. Revista Estudos Geográficos, 3(1), 71–91 (in Portuguese).Google Scholar
  15. Chaves, H. M. L., & Santos, L. B. (2009). Ocupação do solo, fragmentação da paisagem e qualidade da água em uma pequena bacia hidrográfica. Revista Brasileira de Engenharia Agrícola e Ambiental, 13, 922–930 (in Portuguese).CrossRefGoogle Scholar
  16. Cunha, D. G. F., Dodds, W. K., & Calijuri, M. C. (2011). Defining nutrient and biochemical oxygen demand baselines for tropical rivers and streams in São Paulo State (Brazil): a comparison between reference and impacted sites. Environmental Management, 48, 945–956.CrossRefGoogle Scholar
  17. Dodds, W. K. (2006). Eutrophication and trophic state in rivers and streams. Limnology and Oceanography, 51, 671–680.CrossRefGoogle Scholar
  18. Dodds, W. K., Jones, J. R., & Welch, E. B. (1998). Suggested classification of stream trophic state: distributions of temperate stream types by chlorophyll, total nitrogen, and phosphorus. Water Research, 32, 1455–1462.CrossRefGoogle Scholar
  19. Dodds, W. K., Bouska, W. W., Eitzmann, J. L., Pilger, T. J., Pitts, K. L., Riley, A. J., Schloesser, J. T., & Thornbrugh, D. J. (2009). Eutrophication of U.S. freshwaters: analysis of potential economic damages. Environmental Science and Technology, 43(1), 12–19.CrossRefGoogle Scholar
  20. Dodds, W. K., & Oakes, R. M. (2004). A technique for establishing reference nutrient concentrations across watersheds affected by humans. Limnology and Oceanography: Methods, 2, 333–341.CrossRefGoogle Scholar
  21. Dodds, W. K., & Oakes, R. M. (2008). Headwater influences on downstream water quality. Environmental Management, 41, 367–377.CrossRefGoogle Scholar
  22. Dodkins, I., Rippey, B., Harrington, T. J., Bradley, C., Chathain, B. N., Kelly-Quinn, M., McGarrigle, M., Hodge, S., & Trigg, D. (2005). Developing an optimal river typology for biological elements within the Water Framework Directive. Water Research, 39, 3479–3486.CrossRefGoogle Scholar
  23. Gücker, B., Boëchat, I. G., & Giani, A. (2009). Impacts of agricultural land use on ecosystem structure and whole-stream metabolism of tropical Cerrado streams. Freshwater Biology, 54, 2069–2085.CrossRefGoogle Scholar
  24. Hawkins, C. P., Olson, J. R., & Hill, R. A. (2010). The reference condition: predicting benchmarks for ecological and water-quality assessments. Journal of the North American Benthological Society, 29(1), 312–343.CrossRefGoogle Scholar
  25. Hilton, J., O’Hare, M., Bowes, M. J., & Jones, J. I. (2006). How green is my river? A new paradigm of eutrophication in rivers. The Science of the Total Environment, 365, 66–83.CrossRefGoogle Scholar
  26. IBGE. Brazilian Institute of Geography and Statistics. Accessed 2 July 2012 (in Portuguese).
  27. Lampert, W., & Sommer, U. (1997). Limnoecology: the ecology of lakes and streams. Oxford: Oxford University Press.Google Scholar
  28. Lock, K., Asenovab, M., & Goethals, P. L. M. (2011). Benthic macroinvertebrates as indicators of the water quality in Bulgaria: a case-study in the Iskar river basin. Limnologica, 41, 334–338.CrossRefGoogle Scholar
  29. Lorenz, A. W., & Feld, C. K. (2013). Upstream river morphology and riparian land use overrule local restoration effects on ecological status assessment. Hydrobiologia, 704(1), 489–501.CrossRefGoogle Scholar
  30. Martinelli, L. A., Coletta, L. D., Ravagnani, E. C., Camargo, P. B., Ometto, J. P. H. B., Filoso, S., & Victoria, R. L. (2010). Dissolved nitrogen in rivers: comparing pristine and impacted regions of Brazil. Brazilian Journal of Biology, 70(3), 709–722.CrossRefGoogle Scholar
  31. Morgan, R. P., II, Kline, K. M., & Churchill, J. B. (2013). Estimating reference nutrient criteria for Maryland ecoregions. Environmental Monitoring and Assessment, 185, 2123–2137.CrossRefGoogle Scholar
  32. Muniz, D. H. F., Moraes, A. S., Freire, I. S., Cruz, C. J. D., Lima, J. E. F. W., & Oliveira-Filho, E. C. (2011). Evaluation of water quality parameters for monitoring natural, urban, and agricultural areas in the Brazilian Cerrado. Acta Limnologica Brasiliensia, 23(3), 307–317.CrossRefGoogle Scholar
  33. Newall, P., & Tiller, D. (2002). Derivation of nutrient guidelines for streams in Victoria, Australia. Environmental Monitoring and Assessment, 74, 85–103.CrossRefGoogle Scholar
  34. Padovesi-Fonseca, C., Corrêa, A. C. G., Leite, G. F. M., Jovelli, J. C., Costa, L. S., & Pereira, S. T. (2010). Diagnóstico da sub-bacia do ribeirão Mestre D’Armas por meio de dois métodos de avaliação ambiental rápida, Distrito Federal, Brasil Central. Ambi-Água, 5(1), 43–56 (in Portuguese).CrossRefGoogle Scholar
  35. Padovesi-Fonseca, C., & Martins-Silva, M. J. (2012). Biologic integrity analysis as protection tool of Cerrado’s pristine areas. In C. Bilibio, O. Hensel, J.F. Selbach (Orgs.), Sustainable water management in tropics and subtropics and case studies in Brazil, v. 3 (pp 685–721). Jaguarão: UNIPAMPA/UNIKASSELL/PGCULT/UFMA.Google Scholar
  36. Pardo, I., Gómez-Rodríguez, C., Wasson, J.-G., Owen, R., van de Bund, W., Kelly, M., Bennett, C., Birk, S., Buffagni, A., Erba, S., Mengin, N., Murray-Bligh, J., & Ofenböeck, G. (2012). The European reference condition concept: a scientific and technical approach to identify minimally-impacted river ecosystems. The Science of the Total Environment, 420, 33–42.CrossRefGoogle Scholar
  37. Parron, L. M., Bustamante, M. M. C., & Markewitz, D. (2011). Fluxes of nitrogen and phosphorus in a gallery forest in the Cerrado of central Brazil. Biogeochemistry, 105, 89–104.CrossRefGoogle Scholar
  38. Pretty, J. N., Mason, C. F., Nedwell, D. B., Hine, R. E., Leaf, S., & Dils, R. (2003). Environmental costs of freshwater eutrophication in England and Wales. Environmental Science and Technology, 37(2), 201–208.CrossRefGoogle Scholar
  39. Reatto, A., & Martins, E. S. (2005). Classes de solo em relação aos controles da paisagem no bioma Cerrado. In A. Scariot, J.C. Sousa-Silva, J.M. Felfili (Orgs.), Cerrado: Ecologia, Biodiversidade e Conservação (pp 49–59). Brasília: Ministério do Meio Ambiente (in Portuguese).Google Scholar
  40. da Silva, F. A. M., Assad, E. D., & Evangelista, B. A. (2008). Caracterização climática do bioma Cerrado. In S. M. Sano, S. M. P. Almeida, & J. F. Ribeiro (Eds.), Cerrado: Ecologia e Flora (pp. 69–87). Brasília: Embrapa Informação Tecnológica (in Portuguese).Google Scholar
  41. Silva, J. S. O., Bustamante, M. M. C., Markewitz, D., Krusche, A. V., & Ferreira, L. G. (2011). Effects of land cover on chemical characteristics of streams in the Cerrado region of Brazil. Biogeochemistry, 105, 75–88.CrossRefGoogle Scholar
  42. Silva, G. B. S., & Steinke, V. A. (2009). Alterações na paisagem e seus impactos diretos nas áreas de preservação permanentes das nascentes da bacia hidrográfica do Ribeirão Taboca (DF): uma análise espaço-temporal1964-2004. Caminhos de Geografia, 10(32), 87–99 (in Portuguese).Google Scholar
  43. Silva, W. J., Felisberto, S. A., Padovesi-Fonseca, C., & Souza, M. G. M. (2010). Serial discontinuity along the Descoberto River Basin, Central Brazil. Acta Limnologica Brasiliensia, 22(3), 344–355.Google Scholar
  44. Smith, R. A., Alexander, R. B., & Schwarz, G. E. (2003). Natural background concentrations of nutrients in streams and rivers of the conterminous United States. Environmental Science and Technology, 37, 2039–3047.Google Scholar
  45. Thomas, S. M., Neill, C., Deegan, L. A., Krusche, A. V., Ballester, V. M., & Victoria, R. L. (2004). Influences of land use and stream size on particulate and dissolved materials in a small Amazonian stream network. Biogeochemistry, 68, 135–151.CrossRefGoogle Scholar
  46. Vendrame, P. R. S., Brito, O. R., Guimarães, M. F., Martins, E. S., & Becquer, T. (2010). Fertility and acidity status of latossolos (oxisols) under pasture in the Brazilian Cerrado. Anais da Academia Brasileira de Ciências, 82(4), 1085–1094.CrossRefGoogle Scholar
  47. Wantzen, K.M. (2003). Cerrado streams—characteristics of a threatened freshwater ecosystem type on the Tertiary Shields of Central South America. Amazoniana, XVII(3/4), 481–502.Google Scholar
  48. Zeilhofer, P., Lima, E. B. N. R., & Lima, G. A. R. (2006). Spatial patterns of water quality in the Cuiabá river basin, central Brazil. Environmental Monitoring and Assessment, 123, 41–62.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Bárbara Medeiros Fonseca
    • 1
  • Luciana de Mendonça-Galvão
    • 1
  • Claudia Padovesi-Fonseca
    • 2
  • Lucijane Monteiro de Abreu
    • 3
  • Adriana Cristina Marinho Fernandes
    • 4
  1. 1.Curso de BiologiaCatholic University of Brasília–Universidade Católica de Brasília (UCB)TaguatingaBrazil
  2. 2.Departamento de Ecologia, Laboratório de Limnologia (Núcleo de Estudos Limnológicos–NEL), Instituto de BiologiaUniversity of Brasília–Universidade de Brasília (UnB)BrasíliaBrazil
  3. 3.Campus Faculdade de Planaltina (FUP)University of Brasília–Universidade de BrasíliaBrasíliaBrazil
  4. 4.National Council of Technological and Scientific Development–Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)BrasíliaBrazil

Personalised recommendations