Advertisement

Environmental Monitoring and Assessment

, Volume 185, Issue 12, pp 10365–10375 | Cite as

Removal of 8-quinolinecarboxylic acid pesticide from aqueous solution by adsorption on activated montmorillonites

  • M. Mekhloufi
  • A. Zehhaf
  • A. Benyoucef
  • C. Quijada
  • E. Morallon
Article

Abstract

Sodium montmorillonite (Na-M), acidic montmorillonite (H-M), and organo-acidic montmorillonite (Org-H-M) were applied to remove the herbicide 8-quinolinecarboxylic acid (8-QCA). The montmorillonites containing adsorbed 8-QCA were investigated by transmission electron microscopy, FT-IR spectroscopy, X-ray diffraction analysis, X-ray fluorescence thermogravimetric analysis, and physical adsorption of gases. Experiments showed that the amount of adsorbed 8-QCA increased at lower pH, reaching a maximum at pH 2. The adsorption kinetics was found to follow the pseudo-second-order kinetic model. The Langmuir model provided the best correlation of experimental data for adsorption equilibria. The adsorption of 8-QCA decreased in the order Org-H-M > H-M > Na-M. Isotherms were also used to obtain the thermodynamic parameters. The negative values of ΔG indicated the spontaneous nature of the adsorption process.

Keywords

Adsorption isotherms 8-Quinolinecarboxylic acid Activated montmorillonite Kinetics Thermodynamic data 

Notes

Acknowledgments

This work was supported by the National Agency for the Development of University Research (CRSTRA) and the Directorate General of Scientific Research and Technological Development of Algeria. The Ministerio de Economía y Competitividad (MAT2010-15273 project) and FEDER are also acknowledged.

References

  1. Ayranci, E., & Hoda, N. (2005). Adsorption kinetics and isotherms of pesticides onto activated carbon-cloth. Chemosphere, 60, 1600–1607.CrossRefGoogle Scholar
  2. Belbachir, M., Bensaoula, A. (2001). US Patent no. 6, 274, 527 B1.Google Scholar
  3. Bleam, W. F. (1990). The nature of cation-substitution sites in phyllosilicates. Clays and Clay Minerals, 38, 527–536.CrossRefGoogle Scholar
  4. Boyd, S. A., Mortland, M. M., & Chiou, C. T. (1988). Sorption characteristics of organic compounds on hexadecyltrimethylammonium-smectite. J Soil Sci Soc Am, 52, 652–657.CrossRefGoogle Scholar
  5. Brigatti, M. F., Lugli, C., & Poppi, L. (2000). Kinetics of heavy-metal removal and recovery in sepiolite. Applied Clay Science, 16, 45–57.CrossRefGoogle Scholar
  6. Cazorla, A. D., Alcañiz, M. J., & Linares, S. A. (1996). Characterization of activated carbon fibers by CO2 adsorption. Langmuir, 12, 2820–2824.CrossRefGoogle Scholar
  7. Cazorla, A. D., Alcañiz, M. J., De la Casa, L. M. A., & Linares, S. A. (1998). CO2 as an adsorptive to characterize carbon molecular sieves and activated carbons. Langmuir, 14, 4589–4596.CrossRefGoogle Scholar
  8. Celis, R., Trigo, C., Facenda, G., Hermosín, M. C., & Cornejo, J. (2007). Selective modification of clay minerals for the adsorption of herbicides widely used in olive groves. Journal of Agricultural and Food Chemistry, 55, 6650–6658.CrossRefGoogle Scholar
  9. Daneshvar, N., Aber, S., Khani, A., & Rasoulifard, M. H. (2007). Investigation of adsorption kinetics and isotherms of imidacloprid as a pollutant from aqueous solution by adsorption onto industrial granular activated carbon. Journal of Food Agriculture and Environment, 5, 425–429.Google Scholar
  10. Dixon, J. B., Weed, S. B., & Dinauer, R. C. (1977). Minerals in soil environments. Berkeley: Soil Science Society of America.Google Scholar
  11. Do-Nascimento, G. M., Constantino, V. R. L., Landers, R., & Temperini, M. L. A. (2004). Aniline polymerization into montmorillonite clay: a spectroscopic investigation of the intercalated conducting polymer. Macromolecules, 37, 9373–9385.CrossRefGoogle Scholar
  12. Forster, C. F. (2003). Wastewater treatment and technology. London: Thomas Telford.CrossRefGoogle Scholar
  13. Garribba, E., Micera, G., Sanna, D., & Chruscinska, E. L. (2003). Oxovanadium(IV) complexes of quinoline derivatives. Inorganica Chimica Acta, 348, 97–106.CrossRefGoogle Scholar
  14. Grossmann, K., & Scheltrup, F. (1998). Studies on the mechanism of selectivity of the auxin herbicide quinmerac. Pesticide Science, 52, 111–118.CrossRefGoogle Scholar
  15. Gu, B., Schmitt, J., Chen, Z., Liang, L., & McCarthy, J. F. (1995). Adsorption and desorption of different organic matter fractions on iron oxide. Geochimica et Cosmochimica Acta, 59, 219–229.CrossRefGoogle Scholar
  16. Gupta, V. K., Ali, I., & Saini, V. K. (2006). Adsorption of 2,4-d and carbofuran pesticides using fertilizer and steel industry wastes. Journal of Colloid and Interface Science, 299, 556–563.CrossRefGoogle Scholar
  17. Hamdaoui, O., & Naffrechoux, E. (2007). Modeling of adsorption isotherms of phenol and chlorophenols onto granular activated carbon. Part II. Models with more than two parameters. Journal of Hazardous Materials, 147, 401–411.CrossRefGoogle Scholar
  18. Hermosín, M. C., Celis, R., Facenda, G., Carrizosa, M. J., Ortega-Calvo, J. J., & Cornejo, J. (2006). Bioavailability of the herbicide 2,4-d formulated with organoclays. Soil Biology and Biochemistry, 38, 2117–2124.CrossRefGoogle Scholar
  19. Ho, Y. S., & McKay, G. (1999). Pseudo-second-order model for sorption processes. Process Biochemistry, 34, 451–465.CrossRefGoogle Scholar
  20. Huang, F. C., Lee, F. J., Lee, C. K., & Chao, H. P. (2004). Effects of cation exchange on the pore and surface structure and adsorption characteristics of montmorillonite. Colloid Surface A, 239, 41–47.CrossRefGoogle Scholar
  21. Jaynes, W. F., & Boyd, S. A. (1991). Clay mineral type and organic compound sorption by hexadecyltrimethylammonium-exchanged clays. Soil Science Society of American Journal, 55, 43–48.CrossRefGoogle Scholar
  22. Kiss, E., Petrohan, K., Sanna, D., Garribba, E., Micera, G., & Kiss, T. (2000). Solution speciation and spectral studies on oxovanadium(IV) complexes of pyridinecarboxylic acids. Polyhedron, 19, 55–61.CrossRefGoogle Scholar
  23. Klumpp, E., Ortega, C. C., & Klahre, P. (2004). Sorption of 2,4-dichlorophenol on modified hydrotalcites. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 230, 111–116.CrossRefGoogle Scholar
  24. Kul, A. R., & Koyunchu, H. (2010). Heavy metal removal from municipal solid waste fly ash by chlorination and thermal treatment. Journal of Hazardous Materials, 179, 332–339.CrossRefGoogle Scholar
  25. Lee, D. K., Char, K., Lee, S. W., & Park, Y. W. (2003). Structural changes of polyaniline/montmorillonite nanocomposites and their effects on physical properties. Journal of Materials Chemistry, 13, 2942–2947.CrossRefGoogle Scholar
  26. Lozano, C. D., Suárez, G. F., Cazorla, A. D., & Linares, S. A. (2009). Porous texture of carbons. In F. Beguin & E. Frackowiak (Eds.), Carbons for electrochemical energy storage and conversion systems (pp. 115–162). Boca Raton: CRC.CrossRefGoogle Scholar
  27. Noyan, H., Onal, M., & Sarikaya, Y. (2007). The effect of sulphuric acid activation on the crystallinity, surface area, porosity, surface acidity, and bleaching power of a bentonite. Food Chemistry, 105, 156–163.CrossRefGoogle Scholar
  28. Nzengung, V. A., Voudrias, E. A., Nkedi-Kizza, P., Wampler, J. M., & Weaver, C. E. (1996). Organic cosolvent effects on sorption equilibrium of hydrophobic organic chemicals by organoclays. Environmental Science and Technology, 30, 89–96.CrossRefGoogle Scholar
  29. Oyanedel-Craver, V. A., Fuller, M., & Smith, J. A. (2006). Simultaneous sorption of benzene and heavy metals onto two organoclays. Journal of Colloid and Interface Science, 309, 485–492.CrossRefGoogle Scholar
  30. Özcan, A., Ömeroglu, C., Erdogan, Y., & Özcan, A. S. (2006). Modification of bentonite with a cationic surfactant: an adsorption study of textile dye reactive blue 19. Journal of Hazardous Materials, 140, 173–179.CrossRefGoogle Scholar
  31. Pernyeszi, T., Kasteel, R., Witthuhn, B., Klahre, P., Vereecken, H., & Klumpp, E. (2006). Organoclays for soil remediation: adsorption of 2,4-dichlorophenol on organoclay/aquifer material mixtures studied under static and flow conditions. Applied Clay Science, 32, 179–189.CrossRefGoogle Scholar
  32. Redding, A. Z., Burns, S. E., Upson, R. T., & Anderson, E. F. (2002). Organoclay sorption of benzene as a function of total organic carbon content. Journal of Colloid and Interface Science, 250, 261–264.CrossRefGoogle Scholar
  33. Richard, W. G., Walter, J., & Weber, J. R. (2001). Evaluation of shale and organoclays as sorbent additives for low-permeability soil containment barriers. Environmental Science and Technology, 35, 1523–1530.CrossRefGoogle Scholar
  34. Salavagione, H. J., Amorós, D. C., Tidjane, S., Belbachir, M., Benyoucef, A., & Morallon, E. (2008). Effect of the intercalated cation on the properties of poly(o-methylaniline)/maghnite clay nanocomposites. European Polymer Journal, 44, 1275–1284.CrossRefGoogle Scholar
  35. Salman, J. M., & Hameed, B. H. (2010). Adsorption of 2,4-dichlorophenoxyacetic acid and carbofuran pesticides onto granular activated carbon. Desalination, 256, 129–135.CrossRefGoogle Scholar
  36. Seki, Y., & Yurdakoc, K. (2005). Paraquat adsorption onto clays and organoclays from aqueous solution. Journal of Colloid and Interface Science, 287, 1–5.CrossRefGoogle Scholar
  37. Sing, K., Everet, D., Haul, R., Moscou, L., Pierotty, R., Rouquerol, J., et al. (1985). Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure and Applied Chemistry, 57, 603–619.CrossRefGoogle Scholar
  38. Smith, J., Jaffe, P., & Chiou, C. (1990). Effect of ten quaternary ammonium cations on tetrachloromethane sorption to clay from water. Environmental Science and Technology, 24, 1167–1172.CrossRefGoogle Scholar
  39. Smith, J. A., & Galan, A. (1995). Sorption of nonionic organic contaminants to single and dual organic cation bentonites from water. Environmental Science and Technology, 29, 685–692.CrossRefGoogle Scholar
  40. Sotelo, J. L., Ovejero, G., Delgado, J. A., & Martínez, I. (2002). Comparison of adsorption equilibrium and kinetics of four chlorinated organics from water onto GAC. Water Research, 36, 599–608.CrossRefGoogle Scholar
  41. Sui, H., Li, X. G., Huang, G. Q., Zhang, Y., & Gao, X. F. (2003). The in-situ remediation technologies for soils contaminated by organic chemicals. Techniques and Equipment for Environmental Pollution Control, 4, 41–45.Google Scholar
  42. Temuulin, J., Jadambaa, T. S., Burmaa, G., Erdenechimeg, S. H., Amarsanaa, J., & MacKenzie, K. J. D. (2004). Characterisation of acid activated montmorillonite clay from Tuulant (Mongolia). Ceramics International, 30, 251–255.CrossRefGoogle Scholar
  43. Wang, X. R., Wu, S. N., & Li, W. S. (1997). Contaminated environment remediation with organoclay minerals. Environmental Chemistry, 16, 1–14.Google Scholar
  44. Wiles, M. C., Huebner, H. J., McDonald, T. J., Donnelly, K. C., & Phillips, T. D. (2005). Matrix-immobilized organoclay for the sorption of polycyclic aromatic hydrocarbons and pentachlorophenol from groundwater. Chemosphere, 59, 1455–1464.CrossRefGoogle Scholar
  45. Wu, C. S., Huang, Y. J., Hsieh, T. H., Huang, P. T., Hsieh, B. H., Han, Y. K., et al. (2008). Studies on the conducting nanocomposite prepared by in situ polymerization of aniline monomers in a neat (aqueous) synthetic mica clay. Journal of Polymer Science Part A: Polymer Chemistry, 46, 1800–1809.CrossRefGoogle Scholar
  46. Yapar, S., Ozbudak, V., Dias, A., & Lopes, A. (2005). Effect of adsorbent concentration to the adsorption of phenol on hexadecyltrimethylammonium-bentonite. Journal of Hazardous Materials B, 121, 135–139.CrossRefGoogle Scholar
  47. Yasser, Z. N., & Jamal, M. S. (2004). Adsorption of phenanthrene on organoclays from distilled and saline water. Journal of Colloid and Interface Science, 269, 265–273.CrossRefGoogle Scholar
  48. Zehhaf, A., Benyoucef, A., Berenguer, R., Quijada, C., Taleb, S., & Morallon, E. (2012). Lead ion adsorption from aqueous solutions in modified Algerian montmorillonites. Journal of Thermal Analysis and Calorimetry, 110, 1069–1077.CrossRefGoogle Scholar
  49. Zhou, Q., Frost, R. L., He, H. P., & Xi, Y. F. (2006). Changes in the surfaces of adsorbed para-nitrophenol on HDTMA organoclay. The XRD and TG study. Journal of Colloid and Interface Science, 307, 50–55.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • M. Mekhloufi
    • 1
  • A. Zehhaf
    • 1
  • A. Benyoucef
    • 1
  • C. Quijada
    • 2
  • E. Morallon
    • 3
  1. 1.Laboratoire de Chimie Organique, Macromoléculaire et des MatériauxUniversité de MascaraMascaraAlgeria
  2. 2.Departamento de Ingeniería Textil y PapeleraUniversitat Politècnica de ValènciaAlcoySpain
  3. 3.Departamento de Química Física e Instituto Universitario de MaterialesUniversidad de AlicanteAlicanteSpain

Personalised recommendations