Environmental Monitoring and Assessment

, Volume 185, Issue 10, pp 8695–8705 | Cite as

Major ion chemistry and weathering processes in the Midyan Basin, northwestern Saudi Arabia

  • Habes A. Ghrefat
  • Awni Batayneh
  • Haider Zaman
  • Taisser Zumlot
  • Eslam Elawadi
  • Yousef Nazzal


Chemical characteristics of 72 groundwater samples collected from Midyan Basin have been studied to evaluate major ion chemistry together with the geochemical and weathering processes controlling the water composition. Water chemistry of the study area is mainly dominated by Na, Ca, SO4, and Cl. The molar ratios of (Ca + Mg)/total cations, (Na + K)/total cations, (Ca + Mg)/(Na + K), (Ca + Mg)/(HCO3 + SO4), (Ca + Mg)/HCO3, and Na/Cl reveal that water chemistry of the Midyan Basin is controlled by evaporite dissolution (gypsum and/or anhydrite, and halite), silicate weathering, and minor contribution of carbonate weathering. The studied groundwater samples are largely undersaturated with respect to dolomite, gypsum, and anhydrite. These waters are capable of dissolving more of these minerals under suitable physicochemical conditions.


Groundwater Weathering Molar ratio Midyan Basin Saudi Arabia 



This work is financially supported by the National Plan for Science, Technology and Innovation (NPST) program, King Saud University, Saudi Arabia (project number 11-ENV1589-02). We also thank the General Directorate of Water in Al-Bad’ City (Ministry of Water & Electricity, Saudi Arabia) for their help and valuable information during the field work.


  1. APHA. (1998). Standard methods for the examination of water and wastewater (20th ed.). Washington: American Public Health Association.Google Scholar
  2. Appelo, C. A. J., & Postma, D. (2005). Geochemistry, groundwater and pollution (2nd ed.). Rotterdam: A.A, Balkema.CrossRefGoogle Scholar
  3. Arslan, H. (2013). Application of multivariate statistical techniques in the assessment of groundwater quality in seawater intrusion area in Bafra Plain, Turkey. Environmental Monitoring and Assessment, 185, 2439–2452. doi: 10.1007/s10661-012-2722-x.CrossRefGoogle Scholar
  4. Batayneh, A., Ghrefat, H., Mogren, S., Laboun, A., Qaisy, S., Zumlot, T., Zaman, H., & Elawadi, E. (2012a). Assessment of the physicochemical parameters and heavy metals toxicity: Application to groundwater quality in unconsolidated shallow aquifer system. Research Journal of Environmental Toxicology, 6, 169–183.CrossRefGoogle Scholar
  5. Batayneh, A., Laboun, A., Qaisy, S., Ghrefat, H., Zumlot, T., Zaman, H., Elawadi, E., & Mogren, S. (2012b). Assessing groundwater quality of the shallow alluvial aquifer system in the Midyan Basin, northwestern Saudi Arabia. The Arabian Gulf Journal for Scientific Research, 30(1), 7–13A.Google Scholar
  6. Batayneh, A., Laboun, A., Qaisy, S., Ghrefat, H., Zumlot, T., Zaman, H., Elawadi, E., Mogren, S., & Al-Qudah, K. (2012c). Assessing groundwater quality of the shallow alluvial aquifer system in the Midyan Basin, northwestern Saudi Arabia. Arab Gulf Journal of Scientific Research, 30, 7–13.Google Scholar
  7. Bokhari, M. (1981). Explanatory notes to the reconnaissance geologic map of the Maqna Quadrangle, Sheet 28/34 D, Kingdom of Saudi Arabia. Saudi Arabian Directorate General of Mineral Resources. Open File Report DGMR-OF-01-16, 32 p.Google Scholar
  8. Chen, J., Wang, F., Xia, X., & Zhang, L. (2002). Major element chemistry of the Changjiang (Yangtze River). Chemical Geology, 187, 231–255.CrossRefGoogle Scholar
  9. Chetelat, B., Liu, C., Zhao, Z., Wang, Q., Li, S., Li, J., & Wang, B. (2008). Geochemistry of the dissolved load of the Changjiang Basin rivers: Anthropogenic impacts and chemical weathering. Geochimica et Cosmochimica Acta, 72, 4254–4277.CrossRefGoogle Scholar
  10. Cidu, R., Biddau, R., & Fanfani, L. (2009). Impact of past mining activity on the quality of groundwater in SW Sardinia (Italy). Journal of Geochemical Exploration, 100, 125–132.CrossRefGoogle Scholar
  11. Clark, M. (1986). Explanatory notes to the geologic map of the Al Bad’ Quadrangle, sheet 28A, Kingdom of Saudi Arabia. Saudi Arabian Deputy Ministry for Mineral Resources. Geoscience Map Series GM-81A, C, scale 1:250,000, with text, 46 p.Google Scholar
  12. Edmunds, W. M., Shand, P., Hart, P., & Ward, R. S. (2003). The natural (baseline) quality of groundwater: A UK pilot study. The Science of the Total Environment, 310, 25–35.CrossRefGoogle Scholar
  13. Gibbs, R. J. (1970). Mechanisms controlling world water chemistry. Science, 170, 1088–1090.CrossRefGoogle Scholar
  14. Jado, R., Hotzl, H., & Roscher, B. (1990). Development of sedimentation along the Saudi Arabian Red Sea coast. Journal of King Abdulaziz University, 3, 47–62.Google Scholar
  15. Jalali, M. (2009). Geochemistry characterization of groundwater in an agricultural area of Razan, Hamadan, Iran. Environmental Geology, 56, 1479–1488.CrossRefGoogle Scholar
  16. Krishnaraj, S., Murugesan, V., Vijayaraghavan, K., Sabarathinam, C., Paluchamy, A., & Ramachandran, M. (2011). Use of hydrochemistry and stable isotopes as tools for groundwater evolution and contamination investigations. Geosciences, 1(1), 16–25.Google Scholar
  17. Laboun, A. (2012). Did glaciers exist during Pleistocene in the Midyan region, northwest corner of the Arabian Peninsula? Arabian Journal of Geosciences, 5, 1333–1339.Google Scholar
  18. Meybeck, M. (1987). Global chemical weathering of surficial rocks estimated from river dissolved loads. American Journal of Science, 287, 401–428.CrossRefGoogle Scholar
  19. Nas, B., & Berktay, A. (2010). Groundwater quality mapping in urban groundwater using GIS. Environmental Monitoring and Assessment, 160, 231–255.Google Scholar
  20. Obiefuna, G. I., & Orazulike, D. M. (2011). The hydrochemical characteristics and evolution of groundwater in semiarid Yola Area, Northeast, Nigeria. Research Journal of Environmental and Earth Sciences, 3(4), 400–416.Google Scholar
  21. Piper, A. M. (1944). A graphic procedure in the geochemical interpretation of water-analysis. Tranansactions American Geophysical Union, 25, 914–928.CrossRefGoogle Scholar
  22. Singh, A. K., Mondal, G. C., Singh, P. K., Singh, S., Singh, T. B., & Tewary, B. K. (2005). Hydrochemistry of reservoirs of Damodar River Basin, India: Weathering processes and water quality assessment. Environmental Geology, 48, 1014–1028.CrossRefGoogle Scholar
  23. Subramani, T., Rajmohan, N., & Elango, L. (2010). Groundwater geochemistry and identificationof hydrogeochemical processes in a hardrock region, Southern India. Environmental Monitoring and Assessment, 162, 123–137.CrossRefGoogle Scholar
  24. Taylor, S. R., & McLennan, S. M. (1985). The continental crust: Its composition and evolution. Oxford: Blackwell. 312 pp.Google Scholar
  25. Wyn Hughes, G., & Johnson, R. (2005). Lithostratigraphy of the Red Sea region. Geo Arabia, 10, 49–78.Google Scholar
  26. Wyn Hughes, G., Perincek, D., Abu-Bshait, A., & Jarad, A. (1999). Aspects of Midyan geology, Saudi Arabian Red Sea. Saudi Aramco Journal of Technology, 1999(2000), 12–42.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Habes A. Ghrefat
    • 1
  • Awni Batayneh
    • 1
  • Haider Zaman
    • 2
  • Taisser Zumlot
    • 1
  • Eslam Elawadi
    • 1
  • Yousef Nazzal
    • 1
  1. 1.Department of Geology and Geophysics, Faculty of ScienceKing Saud UniversityRiyadhSaudi Arabia
  2. 2.Department of Geology, Faculty of ScienceTaibah UniversityMedinaSaudi Arabia

Personalised recommendations