Environmental Monitoring and Assessment

, Volume 185, Issue 9, pp 7627–7645 | Cite as

Conventional, microwave, and ultrasound sequential extractions for the fractionation of metals in sediments within the Petrochemical Industry, Serbia

  • Dubravka Relić
  • Dragana Đorđević
  • Sanja Sakan
  • Ivan Anđelković
  • Ana Pantelić
  • Ratomir Stanković
  • Aleksandar Popović


In this paper, the main objective was fractionation of Cd, Cu, Ni, Pb, Zn, Ca, Fe, and K in certificate material and sediment samples gathered from and around the Petrochemical Industry using the conventional, microwave and ultrasonic sequential extraction. Microwave oven and ultrasound bath were used as an energy source for achieving faster extraction. Additional heating and boiling of samples were avoided by using lower power and shorter time for microwave and ultrasound extraction. Precision and accuracy of procedure were evaluated by using certificate material (BCR701). Acceptable accuracy of metals (87.0–111.3 %) was achieved for all three-step sequential of conventional extraction protocol. An accuracy of the fourth step has been verified with two certificate materials: BCR143R and 146R. The range of total extracted metal concentrations from sediments was similar for all three extraction techniques. A significant high percentage of Cd, Cu, and Zn were obtained after extraction of the exchangeable and acid soluble sediment fraction. Principal component analysis of values obtained after determination of risk assessment code using conventional and ultrasound sequential extraction show similarity of these values. Accuracy, recovery, and risk assessment code values imply that ultrasound sequential extraction is a more suitable, accelerated sequential extraction procedure (30 min per extraction step) than microwave extraction in applied conditions.


Metals Extraction techniques Risk assessment code Sediment 



This research was supported by the Ministry of Science and Technological Development of the Republic of Serbia, grant nos. 172001 and 43007. The authors are grateful to the Petrochemical Industry, Pančevo, for providing the samples and to the anonymous reviewers whose comments led to a greatly improved the manuscript.


  1. Arain, M. B., Kazi, T. G., Jamali, M. K., Jalbani, N., Afridi, H. I., & Baig, J. A. (2008). Speciation of heavy metals in sediment by conventional, ultrasound and microwave assisted single extraction methods: a comparison with modified sequential extraction procedure. Journal of Hazardous Materials, 154, 998–1006.CrossRefGoogle Scholar
  2. Bacon, J. R., & Davidson, C. M. (2008). Is there a future for sequential chemical extraction? Analyst, 133, 25–46.CrossRefGoogle Scholar
  3. Bryce, D. W., Izquierdo, A., & de Castro, M. D. L. (1995). Use of focused microwaves for expeditive shortening of sample pre-treatment: digestion and reduction procedures prior to selenium speciation as selenium(IV) or selenium(VI). Analyst, 120, 2171–2174.CrossRefGoogle Scholar
  4. Canepari, S., Cardarelli, E., Ghighi, S., & Scimonelli, L. (2005). Ultrasound and microwave-assisted extraction of metals from sediments a comparison with the BCR procedure. Talanta, 66, 1122–1130.CrossRefGoogle Scholar
  5. Castillo, M. L. A., Alonso, E. V., Cordero, M. T. S., Pavón, J. M. C., & de Torres, A. G. (2011). Fractionation of heavy metals in sediment by using microwave assisted sequential extraction procedure and determination by inductively coupled plasma mass spectrometry. Microchemical Journal, 98, 234–239.CrossRefGoogle Scholar
  6. Chen, M., & Ma, L. Q. (2001). Comparison of three aqua regia digestion methods for twenty Florida soils. Soil Science Society of America Journal, 65, 491–499.CrossRefGoogle Scholar
  7. Ciceri, E., Giussani, B., Pozzi, A., Dossi, C., & Recchi, S. (2008). Problems in the application of the three-step BCR sequential extraction to low amounts of sediments: an alternative validated route. Talanta, 76, 621–626.CrossRefGoogle Scholar
  8. Davidson, C. M., & Delevoye, G. (2001). Effect of ultrasonic agitation on the release of copper, iron, manganese and zinc from soil and sediments using the BCR three-stage sequential extraction. Journal of Environmental Monitoring, 3, 398–403.CrossRefGoogle Scholar
  9. De la Guardia, M., & Moralse-Rubio, A. (1996). Modern strategies for the rapid determination of metals in sewage sludges. Trends in Analytical Chemistry, 15, 311–318.Google Scholar
  10. Filgueiras, A. V., Lavilla, I., & Bendicho, C. (2002). Chemical sequential extraction for metal partitioning in environmental solid samples. Journal of Environmental Monitoring, 4, 823–857.CrossRefGoogle Scholar
  11. Ipolyi, I., Brunori, C., Cremisini, C., Fodor, P., Macaluso, L., & Morabito, R. (2002). Evaluation of performance of time-saving extraction devices in the BCR three-step sequential extraction procedure. Journal of Environmental Monitoring, 4, 541–548.CrossRefGoogle Scholar
  12. Jain, C. K., Gupta, H., & Chakrapani, G. J. (2008). Enrichment and fractionation of heavy metals in bed sediments of River Narmada, India. Environmental Monitoring and Assessment, 141, 35–47.CrossRefGoogle Scholar
  13. Jamali, M. K., Kazi, T. G., Arain, M. B., Afridi, H. I., Jalbani, N., Kandhro, G. A., et al. (2009). Speciation of heavy metals in untreated sewage sludge by using microwave assisted sequential procedure. Journal of Hazardous Materials, 163, 1157–1163.CrossRefGoogle Scholar
  14. Kazi, T. G., Jamali, M. K., Siddiqui, A., Kazi, G. H., Arain, M. B., & Afridi, H. I. (2006). An ultrasonic assisted extraction method to release heavy metals from untreated sewage sludge samples. Chemosphere, 63, 411–420.CrossRefGoogle Scholar
  15. Mahan, K. I., Foderaro, T. A., Garza, T. L., Martinez, R. M., Maroney, G. A., Trivisonno, M. R., et al. (1987). Microwave digestion techniques in the sequential extraction of calcium, iron, chromium, manganese lead and zinc in sediments. Analytical Chemistry, 59, 938–945.CrossRefGoogle Scholar
  16. Martínez-Fernández, M., Barciela-Alonso, M. C., Moreda-Piñeiro, A., & Bermejo-Barrera, P. (2011). Matrix solid phase dispersion-assisted BCR sequential extraction method for metal partitioning in surface estuarine sediments. Talanta, 83, 840–849.CrossRefGoogle Scholar
  17. Nemati, K., Abu Bakar, N. K., Abas, M. R., & Sobhanzadeh, E. (2011). Speciation of heavy metals by modified BCR sequential extraction procedure in different depths of sediments from Sungai Buloh, Selangor, Malaysia. Journal of Hazardous Material, 192, 402–410.Google Scholar
  18. Pazos-Capéans, P., Barciela-Alonso, M. C., Bermejo-Barrera, A., & Bermejo-Barrera, P. (2005). Chromium available fractions in arousa sediments using a modified microwave BCR protocol based on microwave assisted extraction. Talanta, 65, 678–685.CrossRefGoogle Scholar
  19. Pérez-Cid, B., Fernández-Alborés, A., Fernández-Góomez, E., & Falqué-López, E. (2001a). Use of microwave single extraction form metal fractionation in sewage sludge samples. Analytica Chimica Acta, 431, 209–218.CrossRefGoogle Scholar
  20. Pérez-Cid, B., Fernández-Alborés, A., Fernández-Góomez, E., & Falqué-López, E. (2001b). Metal fractionation in olive oil and urban sewage sludges using the three-stage BCR sequential extraction method and microwave single extraction. Analyst, 126, 1304–1311.CrossRefGoogle Scholar
  21. Pérez-Cid, B., Lavilla, I., & Bendicho, C. (1998). Speeding up a three-stage sequential extraction method for metal speciation using focused ultrasound. Analytica Chimica Acta, 360, 35–41.CrossRefGoogle Scholar
  22. Pérez-Cid, B., Lavilla, I., & Bendicho, C. (1999). Application of microwave extraction for partitioning of heavy metals in sewage sludge. Analytica Chimica Acta, 378, 201–210.CrossRefGoogle Scholar
  23. Quevauviller, P., Donard, O. F. X., Maier, E. A., & Griepink, B. (1992). Improvements of speciation analysis in environmental matrices. Microchimica Acta, 109, 169–190.CrossRefGoogle Scholar
  24. Real, C., Barreiro, R., & Carballeira, A. (1994). The application of microwave heating in sequential extractions of heavy metals in estuarine sediments. Science of the Total Environment, 152, 135–142.CrossRefGoogle Scholar
  25. Reid, M. K., Spencer, K. L., & Shotbolt, L. (2011). An appraisal of microwave-assisted Tessier and BCR sequential extraction methods for the analysis of metals in sediments and soils. Journal of Soils and Sediments, 11, 518–528.CrossRefGoogle Scholar
  26. Reimann, C., & Filzmoser, P. (2000). Normal and lognormal data distribution in geochemistry: death or myth. Consequences for the statistical treatment of geochemical and environmental data. Environmental Geology, 39, 1001–14.CrossRefGoogle Scholar
  27. Relić, D., Đorđević, D., Popović, A., Jadranin, M., & Polić, P. (2010). Fractionation and potential mobility of trace metals in Danube alluvial aquifer within and industrialized zone. Environmental Monitoring and Assessment, 171, 229–248.CrossRefGoogle Scholar
  28. Relić, D., Đorđević, D., Sakan, S., Anđelković, I., Miletić, S., & Đuričić, J. (2011). Aqua regia extracted metals in sediments from the industrial area and surroundings of Pančevo. Journal of Hazardous Materials, 186, 1893–1901.CrossRefGoogle Scholar
  29. Sakan, S., Đorđević, D., Dević, G., Relić, D., Anđelković, I., & Đuričić, J. (2011). A study of trace element contamination in river sediments in Serbia using microwave-assisted aqua-regia digestion and multivariate statistical analysis. Microchemical Journal, 99, 492–502.CrossRefGoogle Scholar
  30. Smith, F. E., & Arsenault, E. A. (1996). Microwave-assisted sample preparation in analytical chemistry. Talanta, 43, 1207–1268.CrossRefGoogle Scholar
  31. Suslick, K. S., & Doktycz, S. J. (1989). The sonochemistry of Zn powder. Journal of American Chemical Society, 111, 2342–2344.CrossRefGoogle Scholar
  32. Tessier, A., Campbell, P. G. C., & Bisson, M. (1979). Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry, 51, 844–851.CrossRefGoogle Scholar
  33. Ure, A. M., Quevauviller, P., Muntau, H., & Griepink, B. (1993). Speciation of heavy metals in soils and sediments: an account of the improvement and harmonization of extraction techniques undertaken under the auspices of the BCR of the CEC. International Journal of Environmental Analytical Chemistry, 51, 135–151.CrossRefGoogle Scholar
  34. Zhou, C. Y., Wong, M. K., Koh, L. L., & Wee, Y. C. (1995). Orthogonal array design for the optimization of closed-vessel microwave digestion parameters for the determination of trace metals in sediments. Analytica Chimica Acta, 314, 121–130.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Dubravka Relić
    • 1
  • Dragana Đorđević
    • 2
  • Sanja Sakan
    • 2
  • Ivan Anđelković
    • 1
  • Ana Pantelić
    • 1
  • Ratomir Stanković
    • 1
  • Aleksandar Popović
    • 1
  1. 1.Faculty of ChemistryUniversity of BelgradeBelgradeSerbia
  2. 2.ICTM, Chemistry CenterUniversity of BelgradeBelgradeSerbia

Personalised recommendations