Advertisement

Environmental Monitoring and Assessment

, Volume 185, Issue 9, pp 7327–7342 | Cite as

Dust events and their influence on aerosol optical properties over Jaipur in Northwestern India

  • Sunita Verma
  • Swagata Payra
  • Ritesh Gautam
  • Divya Prakash
  • Manish Soni
  • Brent Holben
  • Shaun Bell
Article

Abstract

In this study, we systematically document the link between dust episodes and local scale regional aerosol optical properties over Jaipur located in the vicinity of Thar Desert in the northwestern state of Rajasthan. The seasonal variation of AOT500 nm (aerosol optical thickness) shows high values (0.51 ± 0.18) during pre-monsoon (dust dominant) season while low values (0.36 ± 0.14) are exhibited during winter. The Ångström wavelength exponent has been found to exhibit low value (<0.25) indicating relative dominance of coarse-mode particles during pre-monsoon season. The AOT increased from 0.36 (Aprilmean) to 0.575 (May–Junemean). Consequently, volume concentration range increases from April through May–June followed by a sharp decline in July during the first active phase of the monsoon. Significantly high dust storms were observed over Jaipur as indicated by high values of single scattering albedo (SSA440 nm = 0.89, SSA675 nm = 0.95, SSA870 nm = 0.97, SSA1,020 nm = 0.976) than the previously reported values over IGP region sites. The larger SSA values (more scattering aerosol), especially at longer wavelengths, is due to the abundant dust loading, and is attributed to the measurement site’s proximity to the Thar Desert. The mean and standard deviation in SSA and asymmetry parameter during pre-monsoon season over Jaipur is 0.938 ± 0.023 and 0.712 ± 0.017 at 675 nm wavelength, respectively. Back-trajectory air mass simulations suggest Thar Desert in northwestern India as the primary source of high aerosols dust loading over Jaipur region as well as contribution by long-range transport from the Arabian Peninsula and Middle East gulf regions, during pre-monsoon season.

Keywords

Dust Aerosols Optical properties Transport Climate 

Abbreviations

AOT

Aerosols optical thickness

AE

Ångström wavelength exponent

AP

Asymmetery parameter

IGP

Indo Gangetic plains

SSA

Single scattering albedo

Notes

Acknowledgments

We gratefully acknowledge and thank the AERONET group for making all the data available in the form of Level 2.0 quality assured product after necessary screening and post calibrations. The authors thank the NOAA Air Resources Laboratory (ARL) for the provision of the HYSPLIT transport and dispersion model and website http://www.arl.noaa.gov/ready.php used in this publication. This research was also supported by Department of Science and Technology (DST), Govt. of India as a research grant under project SR/S4/AS:39/2009. We also acknowledge wunderground.com and the India Meteorological Department for providing the data. The first authors also acknowledge the Vice Chancellor, BIT Prof Ajay Chakrabarty and Executive Director Prof Purnendu Ghosh for providing the resources that enabled us to carry out this study.

References

  1. Andrews, E., Sheridan, P. J., Fiebig, M., McComiskey, M., Ogren, J. A., Arnott, P., et al. (2006). Comparison of methods for deriving aerosol asymmetry parameter. Journal of Geophysical Research, 111, D05S04.CrossRefGoogle Scholar
  2. Ångström, A. (1964). The parameters of atmospheric turbidity. Tellus, 16, 64–75.CrossRefGoogle Scholar
  3. Beegum, S. N., Moorthy, K. K., Nair, V. S., Babu, S. S., Satheesh, S. K., Vinoj, V., et al. (2008). Characteristics of spectral aerosol optical depths over India during ICARB. Journal of Earth System Science, 117, 303–313.Google Scholar
  4. Bonasoni, P., Laj, P., Marinoni, A., Sprenger, M., Angelini, F., Arduini, J., et al. (2010). Atmospheric brown clouds in the Himalayas: first two years of continuous observations at the Nepal Climate Observatory-Pyramid (5079 m). Atmospheric Chemistry and Physics, 10, 7515–7531. doi: 10.5194/acp-10-7515-2010.
  5. Chinnam, N., Dey, S., Tripathi, S. N., & Sharma, M. (2006). Dust events in Kanpur, Northern India: chemical evidence for source and implications to radiative forcing. Geophysical Research Letters, 33, L08803. doi: 10.1029/2005GL025278.CrossRefGoogle Scholar
  6. Decesari, S., Facchini, M. C., Carbone, C., Giulianelli, L., Rinaldi, M., Finessi, E., et al. (2010). Chemical composition of PM10 and PM1 at the high-altitude Himalayan station Nepal Climate Observatory-Pyramid (NCO-P) (5079 ma.s.l.). Atmospheric Chemistry and Physics, 10, 4583–4596.CrossRefGoogle Scholar
  7. Dey, S., & Girolamo, L. D. (2011). A decade of change in aerosol properties over the Indian subcontinent. Geophysical Research Letters, 38, L14811. doi: 10.1029/2011GL048153.Google Scholar
  8. Dey, S., Tripathi, S. N., Singh, R. P., & Holben, B. N. (2004). Influence of dust storms on the aerosol optical properties over the Indo-Gangetic basin. Journal of Geophysical Research, 109, D20211. doi: 10.1029/2004JD004924.CrossRefGoogle Scholar
  9. Dubovik, O., & King, M. D. (2000). A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements. Journal of Geophysical Research, 105, 20673–20696.CrossRefGoogle Scholar
  10. Dubovik, O., Sinyuk, A., Lapyonok, T., Holben, B. N., Mishchenko, M., Yang, P., et al. (2006). Application of spheroid models to account for aerosol particle non-sphericity in remote sensing of desert dust. Journal of Geophysical Research, 111, D11208. doi: 10.1029/2005JD006619.CrossRefGoogle Scholar
  11. El-Askari, H., Farouk, R., Ichoku, C., & Kafatos, M. (2009). Transport of dust and anthropogenic aerosols across Alexandria. Egypt, Annales Geophysicae, 27, 2869–2879.CrossRefGoogle Scholar
  12. Ganguly, D., Ginoux, P., Ramaswamy, V., Winker, D. M., Holben, B. N., & Tripathi, S. N. (2009). Retrieving the composition and concentration of aerosols over the Indo-Gangetic basin using CALIPSO and AERONET data. Geophysical Research Letters, 36, L13806. doi: 10.1029/2009GL038315.CrossRefGoogle Scholar
  13. Gautam, R., Hsu, N. C., Kafatos, M., & Tsay, S. C. (2007). Influences of winter haze on fog/low cloud over the Indo-Gangetic plains. Journal of Geophysical Research, 112, D05207. doi: 10.1029/2005JD007036,2007.CrossRefGoogle Scholar
  14. Gautam, R., Liu, Z., Singh, R. P., & Hsu, N. C. (2009). Two contrasting dust dominant periods over India observed from MODIS and CALIPSO data. Geophysical Research Letters, 36, L06813. doi: 10.1029/2008GL036967,2009.CrossRefGoogle Scholar
  15. Gautam, R., Hsu, N. C., & Lau, K. M. (2010). Pre-monsoon aerosol characterization and radiative effects over the Indo-Gangetic Plains: implications for regional climate warming. Journal of Geophysical Research, 115, D17208. doi: 10.1029/2010JD013819,2010.CrossRefGoogle Scholar
  16. Gautam, R., Hsu, N. C., Tsay, S. C., Lau, K. M., Holben, B., Bell, S., et al. (2011). Accumulation of aerosols over the Indo-Gangetic plains and southern slopes of the Himalayas: distribution, properties and radiative effects during the 2009 pre-monsoon season. Atmospheric Chemistry and Physics, 11, 12841–12863. doi: 10.5194/acp-11-12841-2011.CrossRefGoogle Scholar
  17. Gobbi, G. P., Angelini, F., Bonasoni, P., Verza, G. P., Marinoni, A., & Barnaba, F. (2010). Sunphotometry of the 2006–2007 aerosol optical/radiative properties at the Himalayan Nepal Climate Observatory-Pyramid (5079 m a.s.l.). Atmospheric Chemistry and Physics, 10, 11209–11221. doi: 10.5194/acp-10-11209-2010.CrossRefGoogle Scholar
  18. Holben, B. N., Eck, T. F., Slutsker, I., Tanre, D., Buis, J. P., Setzer, A., et al. (1998). AERONET – a federated instrument network and data archive for aerosol characterization. Remote Sensing of Environment, 66, 1–16.CrossRefGoogle Scholar
  19. Huang, Y., Chameides, W. L., & Dickinson, R. E. (2007). Direct and indirect effects of anthropogenic aerosols on regional precipitation over East Asia. Journal of Geophysical Research, 112, D03212. doi: 10.1029/2006JD007114.CrossRefGoogle Scholar
  20. Kahn, R. A., Nelson, D. L., Garay, M., Levy, R. C., Bull, M. A., Martonchik, J. V., et al. (2009). MISR aerosol product attributes and statistical comparison with MODIS. IEEE Transactions on Geoscience and Remote Sensing, 47(12), 4095–4114.CrossRefGoogle Scholar
  21. Kaskaoutis, D. G., Kalapureddy, M. C. R., Krishna Moorthy, K., Devara, P. C. S., Nastos, P. T., Kosmopoulos, P. G., et al. (2010). Heterogeneity in pre-monsoon aerosol types over the Arabian Sea deduced from ship-borne measurements of spectral AOTs. Atmospheric Chemistry and Physics, 10, 4893–4908. doi: 10.5194/acp-10-4893-2010.CrossRefGoogle Scholar
  22. Kaufman, Y. J., & Fraser, R. S. (1997). The effect of smoke particles on cloud and climate forcing. Science, 277, 1636–1639.CrossRefGoogle Scholar
  23. Kotchenruther, R., Hobbs, P. V., & Hegg, D. A. (1999). Humidification factors for atmospheric aerosols off the mid-Atlantic coast of the United States. Journal of Geophysical Research, 104, 2239–2251.CrossRefGoogle Scholar
  24. Lau, K.-M., & Kim, K.-M. (2006). Observational relationships between aerosol and Asian monsoon rainfall, and circulation. Geophysical Research Letters, 33, L21810. doi: 10.1029/2006GL027546.CrossRefGoogle Scholar
  25. Lau, K.-M., Kim, M. K., & Kim, K. M. (2006). Asian monsoon anomalies induced by aerosol direct effects. Climate Dynamics, 26, 855–864. doi: 10.1007/s00382-006-0114.CrossRefGoogle Scholar
  26. Lawrence, M. G., & Lelieveld, J. (2010). Atmospheric pollutant outflow from southern Asia: a review. Atmospheric Chemistry and Physics, 10, 11017–11096.CrossRefGoogle Scholar
  27. Lĕon, J.-F., & Legrand, M. (2003). Mineral dust sources in the surroundings of the north Indian Ocean. Geophysical Research Letters, 30(6), 1309. doi: 10.1029/2002GL016690.CrossRefGoogle Scholar
  28. Meehl, G. A., Arblaster, J. M., & Collins, W. D. (2008). Effects of black carbon aerosols on the Indian monsoon. Journal of Climate, 21, 2869–2882.CrossRefGoogle Scholar
  29. Moorthy, K. K., Babu, S. S., Satheesh, S. K., Srinivasan, J., & Dutt, C. B. S. (2007). Dust absorption over the "Great Indian Desert" inferred using ground-based and satellite remote sensing. Journal of Geophysical Research, 112, D09206. doi: 10.1029/2006JD007690.CrossRefGoogle Scholar
  30. Nair, V. S., Moorthy, K. K., Alappattu, D. P., Kunhikrishnan, P. K., George, S., Nair, P. R., et al. (2007). Wintertime Aerosol Characteristics over the Indo-Gangetic Plain (IGP): impacts of local boundary layer processes and long range transport. Journal of Geophysical Research, 112, D13205.CrossRefGoogle Scholar
  31. Pandithurai, G., Dipu, S., Dani, K. K., Tiwari, S., Bisht, D. S., Devara, P. C. S., et al. (2008). Aerosol radiative forcing during dust events over New Delhi, India. Journal of Geophysical Research, 113, D13209. doi: 10.1029/2008JD009804.CrossRefGoogle Scholar
  32. Pant, P., Hegde, P., Dumka, U. C., Sagar, R., Satheesh, S. K., Moorthy, K. K., et al. (2006). Aerosol characteristics at a high-altitude location in central Himalayas: optical properties and radiative forcing. Journal of Geophysical Research, 111, D17206. doi: 10.1029/2005JD006768.CrossRefGoogle Scholar
  33. Parameswaran, K., & Vijayakumar, G. (1994). Effect of relative humidity on aerosol size distribution. Indian Journal of Radio and Space Physics, 23(3), 175–188.Google Scholar
  34. Pease, P. P., Tchakerian, V. P., & Tindale, N. W. (1998). Aerosols over the Arabian Sea: geochemistry and source areas for aeolian desert dust. Journal of Arid Environments, 39, 477–496.CrossRefGoogle Scholar
  35. Prasad, A. K., & Singh, R. P. (2007). Changes in aerosol parameters during major dust storm events (2001–2005) over the Indo-Gangetic Plains using AERONET and MODIS data. Journal of Geophysical Research, 112, D09208. doi: 10.1029/2006JD007778.CrossRefGoogle Scholar
  36. Prospero, J. M., Ginoux, P., Torres, O., Nicholson, S. E., & Gill, T. E. (2002). Environmental characterization of global sources of atmospheric soil dust identified with the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) absorbing aerosol product. Reviews of Geophysics, 40(1), 1002. doi: 10.1029/2000RG000095.CrossRefGoogle Scholar
  37. Ram, K., Sarin, M. M., & Hegde, P. (2010). Long-term record of aerosol optical properties and chemical composition from a high-altitude site (Manora Peak) in Central Himalaya. Atmospheric Chemistry and Physics, 10, 11791–11803. doi: 10.5194/acp-10-11791-2010.CrossRefGoogle Scholar
  38. Ramanathan, V., Crutzen, P. J., Kiehl, J. T., & Rosenfeld, D. (2001). Aerosols, climate, and the hydrological cycle. Science, 294, 2119. doi: 10.1126/science.1064034.CrossRefGoogle Scholar
  39. Ramanathan, V., Li, F., Ramana, M. V., Siva, P. S., Kim, D., Corrigan, C. E., et al. (2007). Atmospheric brown clouds: hemispherical and regional variations in long range transport, absorption and radiative forcing. Journal of Geophysical Research, 112. doi: 10.1029/2006JD008124.
  40. Russell, P. B., Bergstrom, R. W., Shinozuka, Y., Clarke, A. D., DeCarlo, P. F., Jimenez, J. L., et al. (2010). Absorption Ångström exponent in AERONET and related data as an indicator of aerosol composition. Atmospheric Chemistry and Physics, 10, 1155–1169. doi: 10.5194/acp-10-1155-2010.CrossRefGoogle Scholar
  41. Sabbah, I., Ichoku, C., Kaufman, Y. J., & Remer, L. A. (2001). Full year cycle of desert dust spectral optical thickness and precipitable water vapor over Alexandria, Egypt. Journal of Geophysical Research, 106, 18305–18316.CrossRefGoogle Scholar
  42. Satheesh, S. K., Moorthy, K. K., Kaufman, Y. J., & Takemura, T. (2006). Aerosol optical depth, physical properties and the radiative forcing over the Arabian Sea. Meteorology and Atmospheric Physics, 91, 45–62.CrossRefGoogle Scholar
  43. Shrestha, P., Barros, A. P., & Khlystov, A. (2010). Chemical composition and aerosol size distribution of the middle mountain range in the Nepal Himalayas during the 2009 pre-monsoon season. Atmospheric Chemistry and Physics, 10, 11605–11621. doi: 10.5194/acp-10-11605-2010.CrossRefGoogle Scholar
  44. Sikka, D. R. (1997). Desert climate and its dynamics. Current Science, 72(1), 35–46.Google Scholar
  45. Singh, R. P., Dey, S., Tripathi, S. N., Tare, V., & Holben, B. (2004). Variability of aerosol parameters over Kanpur, northern India. Journal of Geophysical Research, 109, D23206. doi: 10.1029/2004JD004966.CrossRefGoogle Scholar
  46. Smirnov, A., Holben, B. N., Eck, T. F., Slutsker, I., Chatenet, B., & Pinker, R. T. (2002). Diurnal variability of aerosol optical depth observed at AERONET (Aerosol Robotic Network) sites. Journal of Geophysical Research Letters, 29(23), 2115. doi: 10.1029/2002GL016305.CrossRefGoogle Scholar
  47. Soni, K., Singh, S., Bano, T., Tanwar, R. S., Nath, S., & Arya, B. C. (2010). Variations in single scattering albedo and Ångström absorption exponent during different seasons at Delhi, India. Atmospheric Environment, 44, 4355–4363. doi: 10.1016/j.atmosenv.2010.07.058.CrossRefGoogle Scholar
  48. Srivastava, A. K., Tiwari, A. K., Devara, P. C. S., Bisht, D. S., Srivastava, M. K., Tripathi, S. N., et al. (2011). Pre-monsoon aerosol characteristics over the Indo-Gangetic Basin: implications to climatic impact. Annals of Geophysics, 29, 789–804.CrossRefGoogle Scholar
  49. Tanre, D., Haywood, J., Pelon, J., Leon, J. F., Chatanet, B., Formenti, P., et al. (2003). Measurement and modeling of the Saharan dust radiative impact: overview of the Saharan Dust Experiment (SHADE). Journal of Geophysical Research, 108, 8574. doi: 10.1029/2002JD003273.CrossRefGoogle Scholar
  50. Verma, S., Worden, J., Payra, S., Jourdain, L., & Shim, C. (2008). Characterizing the long-range Transport of Black Carbon Aerosols during Transport and Chemical Evolution over the Pacific (TRACE-P) Experiment. Environmental Monitoring and Assessment, 154(1–4), 85–92. doi: 10.1007/s10661-008-0379-2. Springer.Google Scholar
  51. Wang, C., Kim, D., Ekman, A. M. L., Barth, M. C., & Rasch, P. J. (2009). Impact of anthropogenic aerosols on Indian summer monsoon. Geophysical Research Letters, 36, L21704. doi: 10.1029/2009GL040114.CrossRefGoogle Scholar
  52. Washington, R., Todd, M., Middleton, N. J., & Goudie, A. S. (2003). Dust storm source areas determined by the Total Ozone Monitoring Spectrometer and surface observations. Annals of the Association of American Geographers, 93, 297–313.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Sunita Verma
    • 1
  • Swagata Payra
    • 1
  • Ritesh Gautam
    • 2
  • Divya Prakash
    • 1
  • Manish Soni
    • 3
  • Brent Holben
    • 2
  • Shaun Bell
    • 2
    • 4
  1. 1.Centre of Excellence in ClimatologyBirla Institute of Technology Mesra, Extension Centre JaipurJaipurIndia
  2. 2.NASA Goddard Space Flight CenterGreenbeltUSA
  3. 3.Remote Sensing DivisionBirla Institute of Technology Mesra, Extension Centre JaipurJaipurIndia
  4. 4.Science Systems and Applications, Inc.LanhamUSA

Personalised recommendations