Environmental Monitoring and Assessment

, Volume 185, Issue 9, pp 7181–7193 | Cite as

Depositional behaviour of C-org, N, P and K in the surface sediments of two shallow water bodies in a tropical coast, India

  • B. Baijulal
  • V. Sobha
  • S. Jissy Jyothi
  • D. Padmalal
  • Jude Emmanuel


The present paper deals with the distribution of sediment and sediment-bound nutrients in two important coastal lagoons of southern Kerala such as the Ashtamudi Estuarine Lagoon in the Kollam district and the Kadinamkulam Lagoon in the Thiruvananthapuram district. Among the two lagoons, the former is coast perpendicular, and the latter is coast parallel. An analysis of the textural characteristics reveals that, in both lagoons, the estuarine mouth and areas close to it are dominated by sand and sand-rich sediment species, indicating a high-energy depositional regime prevailing the region. On the other hand, the silt and clay dominant arms are almost sheltered and enjoy a low-energy depositional environment. The nutrient and organic carbon contents in the sheltered areas are significantly higher than the most dynamic high-energy estuarine mouth regions. This peculiar behaviour of these coastal water bodies has to be given adequate importance while laying down strategies for the conservation and management of these fragile aquatic systems in the south-western coast of India in particular and tropical coasts of the world in general.


Coastal lagoons Sediment distribution in south-west coast of India Sediment-bound nutrients 



The authors would like to thank the Head of the Department of Environmental Sciences, University of Kerala, for the facilities received. DP would like to thank the Director, Centre for Earth Science Studies (CESS), for the encouragements and support.


  1. Arunkumar, K. S., & Joseph, S. (2006). Environmental degradation of coastal ecosystems: a case study from Kadinamkulam estuary, southern Kerala. Pollution Research, 25, 535–542.Google Scholar
  2. Azis, P. K. A., & Nair, N. B. (1980). Ecology of the Paravur Kayal along the south-west coast of India. In B. Patel (Ed.), Management of environment (pp. 417–431). New Delhi: Wiley Eastern Ltd.Google Scholar
  3. Babu, K. N., Ouseph, P. P., & Padmalal, D. (1999). Interstitial water–sediment geochemistry of N, P and Fe and its response to overlying waters of tropical estuaries: a case from the south west coast of India. Environmental Geology, 39, 633–640.CrossRefGoogle Scholar
  4. Babu, K. N., Ouseph, P. P., & Padmalal, D. (2000). Interstitial water–sediment geochemistry of N, P and Fe and its response to overlying waters of tropical estuaries: a case from the southwest coast of India. Environmental Geology, 39, 633–640.CrossRefGoogle Scholar
  5. Badarudeen, A., Maya, K., & Sajan, K. (1997). Sediment, organic carbon and trace metal distributions in the mangrove environment at Veli, Kerala. In Proceedings of the 9th Kerala Science Congress, Kerala State Council for Science, Technology and Environment, Thiruvananthapuram, India, 85–87.Google Scholar
  6. Bava, A. (1996). Geochemistry of interstitial waters and sediments of Vembanad estuary, Kerala, India, Ph. D. thesis, Cochin University of Science and Technology, Cochin, Kerala, India, 1–109.Google Scholar
  7. Beck, H. J., & Birch, G. F. (2012). Metals, nutrients and total suspended solids discharged during different flow conditions in highly urbanised catchments. Environmental Monitoring and Assessment, 184, 637–653.CrossRefGoogle Scholar
  8. Bernard, G., Boudouresque, C. F., & Picon, P. (2007). Long term changes in Zostera meadows in the Berre Lagoon (Provence, Mediterranean Sea). Estuarine, Coastal and Shelf Science, 73, 617–629.CrossRefGoogle Scholar
  9. Bhatia, M. R., & Cook, K. A. W. (1986). Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins. Contributions to Mineralogy and Petrology, 92, 181–193.CrossRefGoogle Scholar
  10. Boatman, N., Stoate, C., Gooch, R., Carvalho, C. R., Borralho, R., de Snoo, G., et al. (1999). The environmental impact of arable crop production in the European Union: practical options for improvement, Environmental Commission Directorate-General, Environment, Nuclear Safety and Civil Protection, UK, Belgium, Portugal, The Netherlands.Google Scholar
  11. Bodek, I. B., Lyman, W. J., Reehl, W. F., & Rosenblatt, D. H. (1989). Environmental inorganic chemistry: properties, processes and estimation methods (pp. 1–1280). Pergamon: SETAC Special Publication Series.Google Scholar
  12. Bodineau, L., Thoumelin, G., & Wartel, M. (1999). Fluxes and seasonal changes in composition of organic matter in the English Channel. Continental Shelf Research, 19, 2101–2119.CrossRefGoogle Scholar
  13. Burns, P. A., & Salomon, M. (1969). Phosphate absorption by kaolin in saline environments. Proceedings of the National Shellfisheries Association, 59, 121–125.Google Scholar
  14. Casabianca, M. L., Laugier, T., & Collart, D. (1997). Impact of shellfish farming eutrophication on benthic macrophyte communities in the Thau Lagoon, France. Aquaculture International, 5, 301–314.CrossRefGoogle Scholar
  15. Charpentier, A., Grillas, P., Lescuyer, F., Coulet, E., & Auby, I. (2005). Spatio-temporal dynamics of a Zostera noltii dominated community over a period of fluctuating salinity in a shallow lagoon, Southern France. Estuarine, Coastal and Shelf Science, 64, 307–315.CrossRefGoogle Scholar
  16. Cloern, J. E. (2001). Our evolving conceptual model of the coastal eutrophication problem. Marine Ecology Progress Series, 210, 223–253.Google Scholar
  17. Countway, R. E., Canuel, E. A., & Dickhut, R. M. (2007). Sources of particulate organic matter in surface waters of the York River, VA estuary. Organic Geochemistry, 38, 365–379.CrossRefGoogle Scholar
  18. David, S., Valdes-Lozano, Chumacero, M., & Real, E. (2006). Sediment oxygen consumption in a developed coastal lagoon of Mexican Caribbean. Indian Journal of Marine Sciences, 35, 227–234.Google Scholar
  19. Edmond, J. M., Spivack, A., & Grant, B. C. (1985). Chemical dynamics of the Changjiang estuary. Continental Shelf Research, 4, 17–36.CrossRefGoogle Scholar
  20. El Wakeel, S. K., & Riley, J. P. (1957). The determination of organic carbon in marine sediments. J du Conseil perm Int Pour L’ Exploration De La Mer, 22, 180–183.Google Scholar
  21. Elliott, M., & de Jonge, V. N. (2002). The management of nutrients and potential eutrophication in estuaries and other restricted water bodies. Hydrobiologia, 475(476), 513–524.CrossRefGoogle Scholar
  22. Ergin, M., Saydam, C., Bastwrk, O., Erden, E., & Yoruk, R. (1991). Heavy metal concentration in surface sediments from the two coastal inlets (Golden Horn estuary and Izmit Bay) of the North eastern Sea of Marmara. Chemical Geology, 91, 269–285.CrossRefGoogle Scholar
  23. Fianko, J. R., Osae, S., Adomako, D., Adotey, D. K., & Serfor-Armah, Y. (2007). Assessment of heavy metal pollution of the Iture estuary in the central region of Ghana. Environmental Monitoring and Assessment, 131, 467–473.CrossRefGoogle Scholar
  24. Fralick, P. W., & Kronberg, B. I. (1997). Geochemical discrimination of clastic sedimentary rock sources. Sedimentary Geology, 113, 111–124.CrossRefGoogle Scholar
  25. Fukuda, H., Ogawa, H., Sohrin, R., Yamasaki, A., & Koike, I. (2007). Sources of dissolved organic carbon and nitrogen in Otsuchi Bay on the Sanriku ria coast of Japan in the spring. Coastal Marine Science, 31, 19–29.Google Scholar
  26. Gomez, E., Millet, B., & Picote, B. (1998). Accumulation des sels nutritifis dans sediment lagunaire et environment hydrodynamique. Oceanologica Acta, 26, 805–817.CrossRefGoogle Scholar
  27. Hedge, V. S., Kanchanagouri, D., Gosavi, D., Hanamgond, P. T., Huenenunnavar, U. K., Shalini, G., et al. (2004). Depositional environment and silting in the Sharavati estuary, central west coast of India. Indian Journal of Marine Science, 33, 296–302.Google Scholar
  28. Hodgkin, E. P., & Hamilton, B. H. (1993). Fertilizers and eutrophication in southwestern Australia: setting the scene. Fertiliser Research, 36, 95–103.CrossRefGoogle Scholar
  29. Howarth, R. W., Fruci, J. R., & Sherman, D. (1991). Inputs of sediment and carbon to an estuarine ecosystem: influence of land use. Ecological Applications, 1, 27–39.CrossRefGoogle Scholar
  30. Jayaraju, N., Reddy, B. C. S. R., & Reddy, K. R. (2011). Anthropogenic metal pollution in surface sediments of the Tambaraparni River estuary. Chemistry and Ecology, 27, 337–350.CrossRefGoogle Scholar
  31. Junk, W. J. (2002). Long-term environment trends and the future of tropical wetlands. Environmental Conservation, 29, 414–435.CrossRefGoogle Scholar
  32. Kemp, S. (1917). Notes on the fauna of Matlah river in the Gangetic delta. Records of the Indian Museum Calcutta, 13, 233–241.Google Scholar
  33. Kim, L. H., Choi, E., & Stenstorm, M. K. (2003). Sediment characteristics, phosphorous types and phosphorous release rates between river and lake sediments. Chemosphere, 50, 53–61.CrossRefGoogle Scholar
  34. Kumar, J. I. N., George, B., Kumar, R. N., Sajish, P. R., & Viyol, S. (2009). Assessment of spatial and temporal fluctuations in water quality of a tropical permanent estuarine system—Tapi, west coast India. Applied Ecological Environmental Research, 3, 267–276.Google Scholar
  35. Lewis, D. W. (1984). Practical sedimentology (pp. 1–227). Pennsylvania: Hutchinson Ross Publishing Company.Google Scholar
  36. Lopez, P., & Lluch, X. (2000). Sediment geochemistry of a meromictic coastal lagoon, “Es Cibollar” (Majorca, Spain). Lirnnetica, 18, 15–27.Google Scholar
  37. Lopez, P., Lluch, X., Vidal, M., & Morgui, J. A. (1996). Adsorption of phosphorous on sediment of the Balearic Island (Spain) related to their composition. Estuarine, Coastal and Shelf Science, 42, 185–196.CrossRefGoogle Scholar
  38. Mackereth, F. J. J. (1966). Some chemical observations on post-glacial lake sediments. Philosophical Transactions of the Royal Society of London, 250, 167–213.CrossRefGoogle Scholar
  39. Maher, W. A., & de Vries, M. (1994). The release of phosphorus from oxygenated estuarine sediments. Chemical Geology, 112, 91–104.CrossRefGoogle Scholar
  40. Nair, M. N. M., & Ramachandran, K. K. (2002). Textural and trace elemental distribution in sediment of the Beypore estuary (SW coast of India) and adjoining innershelf. Indian Journal of Marine Science, 31, 295–304.Google Scholar
  41. Nair, N. B., Azis, P. K. A., Dharmaraj, K., Arunachalam, M., Krishnakumar, K., & Balasubramanian, N. K. (1983). Ecology of Indian estuaries. Part I: physico-chemical features of water and sediment nutrient of Ashtamudy estuary. Indian Journal of Marine Science, 12, 143–150.Google Scholar
  42. Nair, N. B., Azis, P. K. A., Arunachalam, M., Dharmaraj, K., & Krishnakumar, K. (1984). Ecology of Indian estuaries: ecology and distribution of benthic macrofauna in Ashtamudi estuary, Kerala. Mahasagar, 17, 89–101.Google Scholar
  43. Nichols, M., & Allen, G. (1981). Sedimentary processes in coastal lagoons. [in:] Coastal lagoon research, present and future. In Proceedings of the UNESCO, IABO Seminar, Beaufort, NC, U.S.A., UNESCO Technical Papers in Marine Science, 33, 27–80.Google Scholar
  44. Norman, B., Zweifell, U. L., Hopkinson, C. S., & Fray, B. (1995). Production and utilization of dissolved organic carbon during experimental diatom bloom. Limnological Oceanography, 40, 898–907.CrossRefGoogle Scholar
  45. Nurnberg, G. K. (1984). The prediction of internal phosphorus load in lakes with anoxic hypolimnia. Limnological Oceanography, 29, 111–124.CrossRefGoogle Scholar
  46. Okaichi, J. M. (1997). Red tides in the Seto Inland Sea. In T. Okaichi & T. Tanagi (Eds.), Sustainable development in the Seto Sea inland Japan: from the viewpoint of fisheries (pp. 251–304). Tokyo: Terra Scientific Publishing Company.Google Scholar
  47. Padmalal, D., & Seralathan, P. (1995). Organic carbon and phosphorous loading in recently deposited riverine and estuarine sediments: a granulometric approach. Indian Journal of Earth Sciences, 22, 21–28.Google Scholar
  48. Pedersen, O. B., Christiansen, C., & Laursen, M. B. (1995). Wind induced long term increase and short term fluctuation of shallow water suspended matter and nutrients concentration, Ringkobing Fjord, Denmark. Ophelia, 41, 273–287.Google Scholar
  49. Pejrup, M. (1988). Flocculated suspended sediment in a micro-tidal environment. Sedimentary Geology, 57, 249–256.CrossRefGoogle Scholar
  50. Perl, J. A. (2010). Metal concentration in Manakudy estuarine sediments south west coast of India. International Journal of Biological Technology, 1, 47–51.Google Scholar
  51. Pickard, M. D. (1971). Classification of fine grained sedimentary rocks. Journal of Sedimentary Petrology, 41, 179–195.Google Scholar
  52. Pilson, M. E. Q. (1985). Annual cycles of nutrients and chlorophyll in Narragansett Bay, Rhode Island. Journal of Marine Research, 43, 849–873.CrossRefGoogle Scholar
  53. Qu, W., Dickman, M., & Sumin, W. (2001). Multivariate analysis of heavy metal and nutrient concentrations in sediment of Taihu Lake, China, Hydrobiologia, 83–89.Google Scholar
  54. Rankama, K., & Sahama, T. G. (1950). Geochemistry. Chicago: University of Chicago Press.Google Scholar
  55. Richardson, A. M. (1997). Development of an estuarine water quality index (eWQI) for New South Wales, B. Sc. (Honours), University of Sydney, Sydney.Google Scholar
  56. Ridgway, J., & Shimmield, G. (2002). Estuaries as repositories of historical contamination and their impact on shelf seas. Estuarine, Coastal and Shelf Science, 55, 903–928.CrossRefGoogle Scholar
  57. Ruiz-Fernandez, A. C., Hillaire-Marcel, C., Ghaleb, B., Soto-Jimenez, M., & Paez-Osuna, F. (2002). Recent sedimentary history of anthropogenic impacts on the Culiacan River estuary, Northwestern Mexico: geochemical evidence from organic matter and nutrients. Environmental Pollution, 118, 365–377.CrossRefGoogle Scholar
  58. Saijo, Y., Mitamura, O., & Barbosa, F. A. R. (1997). Chemical studies on sediment of four lakes. In J. Z. Tundisi & Y. Saijo (Eds.), Limnological studies on the Rio Doce Valley lakes, Brazil (pp. 161–167). Sa Carlos: Academia Brasileria de Ciencias.Google Scholar
  59. Sajan, K., & Damodaran, K. T. (1991). The sedimentary framework of the Ashtamudi estuary, Kerala, South West India. Zentralblatt für Geologie und Paläontologie, Teil I, H12, 2995–3007.Google Scholar
  60. Sajan, K., Damodaran, K. T., & Flemming, W. B. (1992). The sedimentary frame work of the Ashtamudi estuary, Kerala, South West India. Zentralblatt für Geologie und Paläontologie, Teil I, H12, 2995–3007.Google Scholar
  61. Sampei, Y., & Matsumoto, E. (2001). C/N ratios in a sediment core from Nakaumi Lagoon, southwest Japan—usefulness as an organic source indicator. Geochemical Journal, 35, 189–205.CrossRefGoogle Scholar
  62. Santhosh, S., Sobha, V., & Thara, J. C. (2006). Hydrobiological parameters of Paravur canal with special reference to various environmental problems. Indian Hydrobiology, 9, 213–219.Google Scholar
  63. Santos, I. R., Baisch, P., Lima, G. T. N. P., & SilvaFilho, E. V. (2004). Nutrients in the surface sediment of Mirim Lagoon, Brazil–Uruguay border. Brazilian Association of Limnology, 16, 85–94.Google Scholar
  64. Saxena, M. M. (1994). Environmental analysis of water, soil and air (pp. 1–232). India: Agro botanical Publishers.Google Scholar
  65. Seralathan, P., Meenakshikutty, N. R., Asraf, K. V., & Padmalal, D. (1993). Sediment and organic carbon distribution in the Cochin harbour area. Indian Journal of Marine Science, 22, 252–255.Google Scholar
  66. Shen, Z. L., Gu, T. X., & Xie, X. B. (1991). Output nutrients fluxes from the Changjiang River. Marine Science, 11, 67–71.Google Scholar
  67. Shilla, D. J., Tsuchiya, M., & Shilla, D. A. (2011). Terrigenous nutrient and organic matter in a subtropical river estuary, Okinawa, Japan: origin, distribution and pattern across the estuarine salinity gradient. Chemistry and Ecology, 27, 523–542.CrossRefGoogle Scholar
  68. Sobha, V., & Miranda, P. I. (1987). Nature of plankton production in Kadinamkulam lake and Ashtamudi estuary of Kerala. In Proceedings of the National Seminar on Estuarine Management, Department of Aquatic Biology and Fisheries, University of Kerala, Thiruvananthapuram, India, 307–317.Google Scholar
  69. Sondergaard, M., Jensen, J. P., & Jeppesen, E. (2003). Role of sediment and internal loading of phosphorus in shallow lakes. Hydrobiologia, 506–509, 135–145.CrossRefGoogle Scholar
  70. Sorensen, T. H., Volund, G., Armah, A. K., Christiansen, C., Jensen, L. B., & Pedersen, J. T. (2003). Temporal and spatial variations of sediment nutrients and carbon in the Keta Lagoon, Ghana. West African Journal of Applied Ecology, 4, 91–105.Google Scholar
  71. Stoddard, J. L., Jeffries, D. S., Lukewille, A., Clair, T. A., Dillon, P. J., Driscoll, C. T., et al. (1999). Regional trends in aquatic recovery from acidification in North America and Europe. Nature, 401, 575–578.CrossRefGoogle Scholar
  72. Tappin, A. D. (2002). An examination of the fluxes of nitrogen and phosphorus in temperate and tropical estuaries: current estimates and uncertainties. Estuarine, Coastal and Shelf Science, 55, 885–901.CrossRefGoogle Scholar
  73. Trivedy, R. K., Goel, P. K., & Trisal, C. L. (1998). Practical methods in ecology and environmental science (pp. 1–340). Karad: Enviro Media Publications.Google Scholar
  74. Vela, A., Pasqualini, V., Leoni, V., Djelouli, A., Langar, H., Pergent, G., et al. (2008). Use of SPOT 5 and IKONOS imagery for mapping biocenoses in a Tunisian Coastal Lagoon (Mediterranean Sea). Estuarine, Coastal and Shelf Science, 79, 591–598.CrossRefGoogle Scholar
  75. Wetzel, R. G. (2001). Limnology: lake and river ecosystems (pp. 1–1006). San Diego: Academic.Google Scholar
  76. Wolfgang, R., Maria, L., San, D., Glone, M., & Gil, S. J. (2006). Organic pollution and its impact on the microbiology of coastal marine environments: a Philippine perspective. Asian Journal of Water Environment Pollution, 4, 1–9.Google Scholar
  77. Zhang, J., Yan, J., & Zhang, Z. F. (1995). Chemical nationwide river chemistry trends in China: Huanghe and Changjiang. Ambio, 24, 275–279.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • B. Baijulal
    • 1
  • V. Sobha
    • 2
  • S. Jissy Jyothi
    • 2
  • D. Padmalal
    • 3
  • Jude Emmanuel
    • 4
  1. 1.Kerala State Biodiversity BoardThiruvananthapuramIndia
  2. 2.Department of Environmental SciencesUniversity of KeralaThiruvananthapuramIndia
  3. 3.Centre for Earth Science StudiesThiruvananthapuramIndia
  4. 4.St. John’s CollegeKollamIndia

Personalised recommendations