Advertisement

Environmental Monitoring and Assessment

, Volume 185, Issue 8, pp 6591–6606 | Cite as

Maximum ecological potential of tropical reservoirs and benthic invertebrate communities

  • Joseline Molozzi
  • Maria João Feio
  • Fuensanta Salas
  • João Carlos Marques
  • Marcos Callisto
Article

Abstract

The Reference Condition Approach (RCA) is now widely adopted as a basis for the evaluation of the ecological quality of water bodies. In accordance with the RCA, the integrity of communities found in a given location should be analyzed according to their deviation from the communities that would be expected in the absence of anthropogenic disturbances. The RCA was used here with the aim of defining the Maximum Ecological Potential (MEP) of tropical reservoirs located in the hydrographical basin of the Paraopeba River in the state of Minas Gerais, Brazil. Among the reservoirs, Serra Azul is used as a water supply and is located in a core area of environmental protection where tourism is not allowed and the native vegetation is conserved. The benthic macroinvertebrate communities at 90 sites located in three reservoirs were analyzed and sampled every 3 months over 2 years. The temporal patterns of the communities in the three reservoirs were analyzed (2nd-STAGE MDS and ANOSIM) and were not significantly related to seasonal fluctuations in temperature and precipitation. Twenty-eight sites belonging to the Serra Azul reservoir were selected to define the MEP of these reservoirs because these sites had the lowest human disturbance levels. The macroinvertebrate taxa present in the selected MEP sites are similar to those of natural lakes and different from the communities of disturbed sites. The biological classification of these sites revealed two groups with distinct macroinvertebrate communities. This distinction was related to climatic variables, bottom substrate type, the presence of gravel/boulders, coarse sand, silt, clay or muck, depth, and the shoreline substrate zone. These two subsets of biological communities and respective environmental conditions can serve as a basis for the future implementation of ecological quality monitoring programs for tropical reservoirs in the study area. This approach can also, however, be implemented in other geographic areas with artificial or heavily modified water bodies.

Keywords

Reservoirs Macroinvertebrates Reference condition approach Tropical region 

Notes

Acknowledgments

The authors would like to thank FAPEMIG and CAPES for the doctoral fellowship and “sandwich” scholarship awarded to the first author, for the financial and logistical support provided through projects and partnerships with Project Manuelzão/UFMG, PETROBRAS-SA, COPASA, FAPEMIG, CNPq, CAPES, US Fish and Wildlife Service and IMAR-Coimbra. Thanks also to the colleagues of the Laboratorio de Ecologia de Bentos–UFMG for their support in the field collections, especially Sophia de Sousa Morais (in memory) for all her help. This paper was written while MC was a sabbatical visitor (CAPES fellowship No. 4959/09-4) at the IMAR, Universidade de Coimbra, Portugal. MJF acknowledge the Institute of Marine Research–CMA and the Portuguese Foundation of Science and Technology (FCT) for the financial support through the FSE, POPH, and COMPETE.

Supplementary material

10661_2012_3049_MOESM1_ESM.doc (298 kb)
ESM 1 (DOC 298 kb)

References

  1. APHA. (1992). Standard methods for the examination of water and wastewater (18th ed.). Washington, DC: American Water Association and Water Environmental Federation.Google Scholar
  2. Arimoro, F. O., Ikomi, R. B., & Iwegbue, C. M. A. (2007). Water quality changes in relation to Diptera community patterns and diversity measured at an organic effluent impacted stream in the Niger Delta, Nigeria. Ecological Indicators, 7, 541–552.CrossRefGoogle Scholar
  3. Aroviita, J., Mykra, H., & Hämäläinen, H. (2010). River bioassessment and the preservation of threatened species: towards acceptable biological quality criteria. Ecological Indicators, 10, 789–795.CrossRefGoogle Scholar
  4. Bailey, R. C., Kennedy, M. G., Dervish, M. Z., & Taylor, R. M. (1998). Biological assessment of freshwater ecosystems using a reference condition approach: comparing predicted and actual benthic invertebrate communities in Yukon streams. Freshwater Biology, 39, 765–774.CrossRefGoogle Scholar
  5. Bailey, R. C., Norris, R. H., & Reynoldson, T. B. (2004). Bioassessment of freshwater ecosystems using the reference condition approach (p. 170). Norwell: Kluwer Academic Publishers.CrossRefGoogle Scholar
  6. Bailey, R. C., Reynoldson, T. B., Yates, A. G., Bailey, J., & Linke, S. (2006). Integrating stream bioassessment and landscape ecology as a tool for land use planning. Freshwater Biology, 52, 908–917.CrossRefGoogle Scholar
  7. Brasil. (2005). Resolução nº 357 de 17 de março de 2005 do Conselho Nacional do Meio Ambiente. Brasil: Diário Oficial da União. Seção 1, nº 53, 18 de março de 2005, (pp. 58–63).Google Scholar
  8. Buss, D. F., & Vitorino, A. S. (2010). Rapid bioassessment protocols using benthic macroinvertebrates in Brazil: evaluation of taxonomic sufficiency. Journal of the North American Benthological Society, 29, 562–571.CrossRefGoogle Scholar
  9. Callisto, M., & Esteves, F. (1996). Composição granulométrica do sedimento de um lago amazônico impactado por rejeito de bauxita e um lago natural. Acta Limnologica Brasiliensia, 8, 115–126.Google Scholar
  10. Camargo, J. A., Alonso, A., & Puente, M. (2005). Eutrophication downstream from small reservoirs in mountain rivers of Central Spain. Water Research, 39, 3376–3384.CrossRefGoogle Scholar
  11. Carlson, R. E. (1977). A trophic state index for lakes. Limnology and Oceanography, 22, 361–369.CrossRefGoogle Scholar
  12. Carvalho, A. L., & Calil, E. R. (2000). Chaves de identificação para famílias de Odonata (Insecta) ocorrentes no Brasil, adultos e larvas. Papéis Avulsos de Zoologia, 41, 223–241.Google Scholar
  13. CETESB (2000). Relatório de Qualidade das Águas Interiores do Estado de São Paulo–2000. São Paulo, Companhia de Tecnologia de Saneamento Ambiental. 391 pp. São Paulo.Google Scholar
  14. Clarke, K. R., & Gorley, R. M. (2006). Primer v. 6: user manual (p. 192). Plymouth: PRIMER-E Ltd, Plymouth Marine Laboratory.Google Scholar
  15. Clarke, K. R., & Warwick, R. M. (2001). Change in marine communities: an approach to statistical analysis and interpretation (2nd ed.). Plymouth: Primer-e Ltd, Plymouth Marine Laboratory. 144.Google Scholar
  16. Clarke, R. T., Wright, J. F., & Furse, T. (2003). RIVPACS models for predicting the expected macroinvertebrate fauna and assessing the ecological quality of rivers. Ecological Modelling, 160, 219–233.CrossRefGoogle Scholar
  17. Clements, R., Koh, L. P., Lee, T. M., Meier, R., & Li, D. (2006). Importance of reservoirs for the conservation of freshwater molluscs in a tropical urban landscape. Biological Conservation, 128, 136–146.CrossRefGoogle Scholar
  18. Costa, C., Ide, S., & Simonka, C. S. (2006). In P. Ribeirão (Ed.), Insetos imaturos metamorfose e identificação (p. 249). São Paulo: Helos.Google Scholar
  19. Cranston, P. S., & Nolte, U. (1996). Fissimentum, a new genus of drought-tolerant chironomini (Diptera: Chironomidae) from the Americas and Australia. Entomological News, 107, 1–15.Google Scholar
  20. Davies, S. P., & Jackson, S. K. (2006). The biological condition gradient: a descriptive model for interpreting change in aquatic ecosystems. Journal of Applied Ecology, 16, 1251–1266.CrossRefGoogle Scholar
  21. Davy-Bowker, J. R. T., Clarke, R., Johnson, K., Kokes, J., Murphy, J. F., & Zahradkova, S. (2006). A comparison of the European water framework directive physical typology and RIVPACS-type models as alternative methods of establishing reference conditions for benthic macroinvertebrates. Hydrobiologia, 566, 91–105.CrossRefGoogle Scholar
  22. INMET (Instituto Nacional de Meteorologia, Brasil). (2010). Available from: http://www.inmet.gov; Accessed 20 Nov 2010.
  23. COPASA (2004). Levantamento batimétrico do reservatório Serra Azul, Mateus Leme e Vargem das Flores-MG. Hydrologic Data Collection Engenharia S/C Ltda, p. 14Google Scholar
  24. Dodds, W., Carney, E., & Angelo, R. T. (2006). Determining ecoregional reference conditions for nutrients, secchi depth and chlorophyll a in Kansas lakes and reservoirs. Lake and Reservoir Management, 22, 151–159.CrossRefGoogle Scholar
  25. Dudgeon, D. (1989). Ecological strategies of Hong Kong Thiaridae (Gastropoda: Prosobranchia). Malacological Review, 22, 39–53.Google Scholar
  26. Epler, J. H. (2001). Identification manual for the larval Chironomidae (Diptera) of North and South Carolina. Aquatic Entomologist. North Carolina Department of Environmental and Natural Resources Division of Water Quality, p. 1073.Google Scholar
  27. European Commission. (2000). Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for community action in the field of water policy. Official Journal of the European Communities, L327, 43, 1–73.Google Scholar
  28. European Commission. (2003). CIS guidance document no. 4. Identification and designation of heavily modified and artificial water bodies. January 2003. Brussels: Directorate General Environment of the European Commission. ISBN 92-894-5124-6, ISSN 1725–1087.Google Scholar
  29. Feio, M. J., Reynoldson, T. B., & Graça, M. A. S. (2006). The influence of taxonomic level on the performance of a predictive model for water quality assessment. Canadian Journal of Fisheries and Aquatic Sciences, 63, 367–376.CrossRefGoogle Scholar
  30. Feio, M. J., Reynoldson, T. B., Ferreira, V., & Graça, M. A. S. (2007). A predictive model for freshwater bioassessment (Mondego River, Portugal). Hydrobiologia, 589, 55–68.CrossRefGoogle Scholar
  31. Feio, M. J., Alves, T., Boavida, M., Medeiros, A., & Graça, M. A. S. (2010). Functional indicators of stream health: a river-basin approach. Freshwater Biology, 55, 1050–1065.CrossRefGoogle Scholar
  32. Fernandez, H. R., & Domingues, E. (2001). Guia para la determinación de los artropodos bentônicos (p. 39). Tucumán: Sudamericanos.Google Scholar
  33. Furey, P. C., Nordin, N., & Mazumder, A. (2006). Littoral benthic macroinvertebrates under contrasting drawdown in a reservoir and a natural lake. Journal of the North American Benthological Society, 25, 19–31.CrossRefGoogle Scholar
  34. Gibson, G. R., Carlson, R. E., Simpson, J., Smeltzer, E., Gerritsen, J., Chapra, S., Heiskary, S., Jones, J., Kennedy, R. (2000). Nutrient criteria technical guidance manual lakes and reservoirs. U.S. Environmental Protection Agency. EPA-822-B00-001.Google Scholar
  35. Golterman, H. L., Clymo, R. S., & Ohnstad, M. A. M. (1978). Methods for physical and chemical analysis of freshwaters (2nd ed., pp. 324–343). Oxford: Blackwell Scientific Publications (IBP 8).Google Scholar
  36. Hair, J. F., Anderson, R. E., Tatham, R. Z., & Blanck, W. C. (1998). Multivariate data analysis (5th ed., p. 600). Upper Saddle River: Prentice Hall International, Inc.Google Scholar
  37. Hawkins, C. P., Olson, J. R., & Hill, R. A. (2010). The reference condition: predicting benchmarks for ecological and water-quality assessments. Journal of the North American Benthological Society, 29, 312–343.CrossRefGoogle Scholar
  38. Hewlett, R. (2000). Implications of taxonomic resolution and sample habitat for stream classification at a broad geographic scale. Journal of the North American Benthological Society, 19, 352–361.CrossRefGoogle Scholar
  39. Horsák, M., Bojková, J., Zahrádková, S., Omesová, J., & Heleŝic, J. (2009). Impact of reservoirs and channelization on lowland river macroinvertebrates: a case study from Central Europe. Limnologica, 39, 140–151.CrossRefGoogle Scholar
  40. Irmer, U., & Pollard, P. (2006). Alternative methodology for defining good ecological potential (GEP) for heavily modified water bodies (hmwb) and artificial water bodies (AWB). Ispra: ECOSTAT.Google Scholar
  41. Kennedy, R. H. (2001). Considerations for establishing nutrient criteria for reservoirs. Lake and Reservoir Management, 17, 175–187.CrossRefGoogle Scholar
  42. Lammens, E., van Luijn, F., Wessels, Y., Bouwhuis, H., Noordhuis, R., Portielje, R., & van der Molen, D. (2008). Towards ecological goals for the heavily modified lakes in the Ijsselmeer area, The Netherlands. Hydrobiologia, 599, 239–247.CrossRefGoogle Scholar
  43. Leunda, P. M., Oscoz, J., Miranda, R., & Ariño, A. H. (2009). Longitudinal and seasonal variation of the benthic macroinvertebrate community and biotic indices in an undisturbed Pyrenean river. Ecological Indicators, 9, 52–63.CrossRefGoogle Scholar
  44. Margalef, R. (1969). Perspectives in ecological theory (p. 111). Chicago: The University of Chicago Press.Google Scholar
  45. Merritt, R. W., & Cummins, K. W. (1996). An introduction to the aquatic insects of North America (3rd ed., p. 722pp). Dubuque: Kendall/Hunt Publishing Company.Google Scholar
  46. Molozzi, J., França, J. S., Araujo, T. L. A., Viana, T. H., Hughes, R. M., & Callisto, M. (2011). Diversidade de habitats físicos e sua relação com macroinvertebrados bentônicos em reservatórios urbanos em Minas Gerais. Iheringia, Série Zoologia, 101, 191–199.CrossRefGoogle Scholar
  47. Moreno, P., & Callisto, M. (2006). Benthic macroinvertebrates in the watershed of an urban reservoir in southeastern, Brazil. Hydrobiologia, 560, 311–321.CrossRefGoogle Scholar
  48. Moretto, Y., Higuti, J., & Takeda, A. M. (2003). Spatial variation of the benthic community in the Corumbá reservoir, Goiás, Brazil. Acta Scientiarum Biological Sciences, 25, 23–30.Google Scholar
  49. Mugnai, R., Nessimian, J. L., & Baptista, D. F. (2010). Manual de identificação de macroinvertebrados aquáticos do Estado do Rio de Janeiro (p. 174pp). Rio de Janeiro: Technical Books Editora.Google Scholar
  50. Navarro, E., Caputo, L., Marcé, R., Carol, J., Benejam, L., García-Berthou, E., & Armengol, J. (2009). Ecological classification of a set of Mediterranean reservoirs applying the EU water framework directive: a reasonable compromise between science and management. Lake and Reservoir Management, 25, 364–376.CrossRefGoogle Scholar
  51. Nijboer, R. C., Johnson, R. K., Verdonschot, P. F. M., Sommerhäuser, M., & Buffagni, A. (2004). Establishing reference conditions for European streams. Hydrobiologia, 516, 91–105.CrossRefGoogle Scholar
  52. Nilsson, C., Reidy, C. A., Dynesius, M., & Revenga, C. (2005). Fragmentation and flow regulation of the world’s large river systems. Science, 308, 405–408.CrossRefGoogle Scholar
  53. Panis, L. T., Goddeeris, B., & Verheyen, R. (1996). On the relationship between vertical microdistribution and adaptations to oxygen stress in littoral Chironomidae (Diptera). Hydrobiologia, 318, 61–67.CrossRefGoogle Scholar
  54. Pérez, G. P. (1988). Guía para el studio de los macroinvertebrados acuáticos del Departamento de Antioquia (p. 217). Bogotá: Editorial Presencia Ltda.Google Scholar
  55. Peterson, A. (1960). Larvae of insects. An introduction to nearctic species (p. 250). Ohio: Columbus.Google Scholar
  56. Pielou, E. C. (1969). An introduction to mathematical ecology (p. 286). New York: Wiley Interscience.Google Scholar
  57. Piet, F., Verdonschot, M., & Nijboer, R. C. (2004). Testing the European stream typology of the water framework directive for macroinvertebrates. Hydrobiologia, 516, 35–54.CrossRefGoogle Scholar
  58. Pinto-Coelho, R. M., Brighenti, L. S., Bezerra-Neto, J. F., Morais, C. A., & Gonzaga, A. V. (2010). Effects of sampling effort on the estimation of spatial gradients in a tropical reservoir impacted by an oil refinery. Limnologica, 40, 126–133.CrossRefGoogle Scholar
  59. Prat, N., & Daroca, V. (1983). Eutrophication processes of Spanish reservoirs as revealed by biological records in profundal sediments. Hydrobiology, 103, 153–158.CrossRefGoogle Scholar
  60. Prat, N., Sanz, F., & Martínez-Ansemil, E. (1991). El Bentos profundo y litoral de una cadena de tres embalses Españoles del Río Guadiana (SW España). Limnetica, 7, 133–152.Google Scholar
  61. Puntí, T., Rieradevall, M., & Prat, N. (2007). Chironomidae assemblages in reference conditions from Mediterranean streams: seasonality, environmental factors and ecotypes. Fundamental and Applied Limnology, 170, 149–165.CrossRefGoogle Scholar
  62. Puntí, T., Rieradevall, M., & Prat, N. (2009). Environmental factors, spatial variation, and specific requirements of Chironomidae in Mediterranean reference streams. Journal of the North American Benthological Society, 28, 247–265.CrossRefGoogle Scholar
  63. Ramos, R. C. (2008). Estudo da composição taxonômica e da densidade de macroinvertebrados bentônicos no sistema de lagoas naturais do vale do médio Rio Doce (MG), com ênfase na espécie de molusco exótica Melanoides tuberculata (Müller, 1774). Tese de Mestrado (p. 165). São Paulo: Universidade de São Paulo.Google Scholar
  64. Rawer-Jost, C., Zenkert, A., & Böhmer, J. (2004). Reference conditions of German stream types analysed and revised with macroinvertebrate fauna. Limnologica, 34, 390–397.CrossRefGoogle Scholar
  65. Reynoldson, T. B., Norris, R. H., Resh, V. H., Day, K. E., & Rosenberg, D. M. (1997). The reference condition: a comparison of multimetric and multivariate approaches to assess water-quality impairment using benthic macroinvertebrates. Journal of the North American Benthological Society, 16, 833–852.CrossRefGoogle Scholar
  66. Rocha-Miranda, F., & Martins-Silva, M. J. (2006). First record of the invasive snail Melanoides tuberculatus (Gastropoda: Prosobranchia: Thiaridae) in the Paraná River basin, GO, Brazil. Brazilian Journal of Biology, 66, 1109–1115.CrossRefGoogle Scholar
  67. Roque, F. O., Siqueira, T., Bini, L. M., Ribeiro, M. C., Tambosi, L. R., Ciocheti, G., & Trivinho-Strixino, S. (2010). Untangling associations between chironomid taxa in Neotropical streams using local and landscape filters. Freshwater Biology, 55, 847–865.CrossRefGoogle Scholar
  68. Rossaro, B., Marziali, L., Cardoso, A. C., Solimini, A., Free, G., & Giacchini, R. (2007). A biotic index using benthic macroinvertebrates for Italian Lakes. Ecological Indicators, 7, 41–429.CrossRefGoogle Scholar
  69. Rueda, F., Moreno-Ostos, E., & Armengol, J. (2006). The residence time of river water in reservoirs. Ecological Modelling, 191, 260–274.CrossRefGoogle Scholar
  70. Ruse, L. (2010). Classification of nutrient impact on lakes using the chironomid pupal exuvial technique. Ecological Indicators, 10, 594–601.CrossRefGoogle Scholar
  71. Salas, F., Patrício, J., Marcos, C., Pardal, M. A., Pérez-Ruzafa, A., & Marques, J. C. (2006). Are taxonomic distinctness measures compliant to other ecological indicators in assessing ecological status? Marine Pollution Bulletin, 52, 162–174.CrossRefGoogle Scholar
  72. Santos, C. M., & Eskinazi-Sant’Anna, E. M. (2010). The introduced snail Melanoides Tuberculatus (Muller, 1774) (Mollusca: Thiaridae) in aquatic ecosystems of the Brazilian Semiarid Northeast (Piranhas-Assu River basin, State of Rio Grande do Norte). Brazilian Journal of Biology, 70, 1–7.CrossRefGoogle Scholar
  73. Shannon, C. E., & Weaver, W. (1963). The mathematical theory of communication (p. 117). Illinois: The University of Illinois Press.Google Scholar
  74. Sporka, F., Viek, H. E., Bulankova, E., & Krno, L. (2006). Influence of seasonal variation on bioassessment of streams using macroinvertebrates. Hydrobiologia, 566, 543–555.CrossRefGoogle Scholar
  75. Stoddard, J. L., Larsen, D. P., Hawkins, C. P., Johnson, R. K., & Norris, R. H. (2006). Setting expectations for the ecological condition of streams: the concept of reference condition. Ecological Applications, 16, 1267–1276.CrossRefGoogle Scholar
  76. Teixeira, H., Salas, F., Pardal, A. M., & Marques, J. C. (2007). Applicability of ecological evaluation tools in estuarine ecosystems: the case of the lower Mondego estuary (Portugal). Hydrobiologia, 587, 101–112.CrossRefGoogle Scholar
  77. Toledo, A. P., Jr., Talarico, M., Chinez, S. J., & Agudo, E. G. (1983). A aplicação de modelos simplificados para a avaliação de processo da eutrofização em lagos e reservatórios Tropicais: In: Anais do 12º Congresso Brasileiro de Engenharia Sanitária. Camboriú (p. 34). Camboriú (SC): Associação Brasileira de Engenharia Sanitária.Google Scholar
  78. Trivinho-Strixino, S. (2011). Larvas de Chironomidae. Guia de Identificação. São Carlos. Departamento Hidrologia Entomologia Aquática/UFSCAR, 2011. 371 pp. São Paulo.Google Scholar
  79. Tundisi, J. G., & Matsumura-Tundisi, T. (2003). Integration of resarch and mangement in optimizing multiple uses of reservoir: the experience in South America and Brazilian case studies. Hydrobiologia, 500, 231–242.CrossRefGoogle Scholar
  80. USEPA. (2007). Evaluation of the nation's lakes: field operations manual. EPA 841-B-07-004. E.S (p. 332). Washington, DC: Environmental Protection Agency.Google Scholar
  81. Verneaux, V. J., Schmitt, A., Lovy, C., & Lambert, J. C. (2004). The Lake Biotic Index (LBI): an applied method for assessing the biological quality of lakes using macrobenthos; the Lake Châlain (French Jura) as an example. Limnologie-International Journal of Limnology, 40, 1–9.CrossRefGoogle Scholar
  82. Yanling, T., Guangxini, Z., Yuesuo, Y., & Yingzhis, G. (2009). Identifying key environmental factors influencing spatial variation of water quality in Upper Shitoukoumen Reservoir Basin in Jilin Province, China. China Geographic Information Science, 4, 365–374.Google Scholar
  83. Zhang, M., Shao, M., Xu, Y., & Cai, Q. (2010). Effect of hydrological regime on the macroinvertebrate community in Three-Gorges Reservoir, China. Quaternary International, 226(1–2), 129–135.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Joseline Molozzi
    • 1
    • 2
    • 4
  • Maria João Feio
    • 2
  • Fuensanta Salas
    • 2
    • 3
  • João Carlos Marques
    • 2
  • Marcos Callisto
    • 1
  1. 1.Departamento de Biologia Geral, Laboratório de Ecologia de Bentos, Instituto de CiênciasUniversidade Federal de Minas GeraisBelo HorizonteBrazil
  2. 2.Department of Life Sciences, IMAR - Institute of Marine Research, Faculty of Sciences and TechnologyUniversity of CoimbraCoimbraPortugal
  3. 3.TRAGSAMurciaSpain
  4. 4.Departamento de Biologia Geral, Programa de Pós-Graduação em Ecologia e Conservação, Laboratório de Ecologia de Bentos, Instituto de Ciências BiológicasUniversidade Estadual da ParaíbaCampina GrandeBrazil

Personalised recommendations