Advertisement

Environmental Monitoring and Assessment

, Volume 185, Issue 8, pp 6221–6233 | Cite as

Using species spectra to evaluate plant community conservation value along a gradient of anthropogenic disturbance

  • José A. P. Marcelino
  • Luís Silva
  • Patricia V. Garcia
  • Everett Weber
  • António O. Soares
Article

Abstract

The aim of this study was to assess the impact of anthropogenic disturbance on the partitioning of plant communities (species spectra) across a landcover gradient of community types, categorizing species on the basis of their biogeographic, ecological, and conservation status. We tested a multinomial model to generate species spectra and monitor changes in plant assemblages as anthropogenic disturbance rise, as well as the usefulness of this method to assess the conservation value of a given community. Herbaceous and arborescent communities were sampled in five Azorean islands. Margins were also sampled to account for edge effects. Different multinomial models were applied to a data set of 348 plant species accounting for differences in parameter estimates among communities and/or islands. Different levels of anthropogenic disturbance produced measurable changes on species spectra. Introduced species proliferated and indigenous species declined, as anthropogenic disturbance and management intensity increased. Species assemblages of relevance other than economic (i.e., native, endemic, threatened species) were enclosed not only in natural habitats, but also in human managed arborescent habitats, which can positively contribute for the preservation of indigenous species outside remnants of natural areas, depending on management strategies. A significant presence of invasive species in margin transects of most community types will contribute to an increase in edge effect that might facilitate invasion. The multinomial model developed in this study was found to be a novel and expedient tool to characterize the species spectra at a given community and its use could be extrapolated for other assemblages or organisms, in order to evaluate and forecast the conservation value of a site.

Keywords

Anthropogenic disturbance Bayesian inference Biodiversity Multinomial model Species spectra 

Notes

Acknowledgments

We thank Mr. Roberto Resendes and Mr. João Moniz for field assistance as well as Eng. Dina Gonçalves and Dr. Pedro Rodrigues for technical support. We also thank the Forest Service of Pico, Flores, and Santa Maria Islands for logistic assistance and lab space as well as CITA-A at Terceira Island. This work was supported by a grant from the Fundo Regional Ciência e Tecnologia, Regional Government of the Azores and PROEMPREGO and the research project “PRO-BIO, Profiling Reliable Organisms as Bioindicators: an integrated approach for island systems” financed by FLAD (Fundação Luso-Americana para o Desenvolvimento).

Supplementary material

10661_2012_3019_MOESM1_ESM.docx (16 kb)
Supplemental Annex 1 (DOCX 16.3 kb)

References

  1. Bassa, M., Boutin, C., Chamorro, L., & Sans, F. X. (2011). Effects of farming management and landscape heterogeneity on plant species composition of Mediterranean field boundaries. Agriculture, Ecosystems and Environment, 141, 455–460.CrossRefGoogle Scholar
  2. Boatman, N. D. (Ed.), (1994). Field margins—integrating agriculture and conservation. BCPC Monograph Nr 58, Surrey, UK: Farnham British Crop Protection Council PublicationsGoogle Scholar
  3. Boender, C. G. E., Rinnooy, & Kan, A. H. G. (1987). A multinomial Bayesian approach to the estimation of population and vocabulary size. Biometrika, 74, 849–856.CrossRefGoogle Scholar
  4. Bolger, T. (2001). The functional value of species biodiversity—a review biology and environment. Proceedings of the Royal Irish Academy, 101B, 199–224.Google Scholar
  5. Borges, P. A. V., Costa, A., Cunha, R., Gabriel, R., Gonçalves, V., Martins, A. F., Melo, I., Parente, M., Raposeiro, P., Rodrigues, P., Santos, R. S., Silva, L., Vieira, P., & Vieira, V. (2010). A list of the terrestrial and marine biota from the Azores. Oeiras: Princípia.Google Scholar
  6. Boutin, C., & Jobin, B. (1998). Intensity of agricultural practices and effects on adjacent habitats. Ecological Applications, 8, 544–557.CrossRefGoogle Scholar
  7. Brook, B. W., Sodhi, N. S., & Bradshaw, C. J. (2008). Synergies among extinction drivers under global change. Trends in Ecology & Evolution, 23, 453–460.Google Scholar
  8. Calvo, E. (2009). The competitive road to proportional representation. World Politics, 61, 254–295.CrossRefGoogle Scholar
  9. Cardoso, P., Borges, P. A. V., & Gaspar, E. C. (2007). Biotic integrity of the arthropod communities in the natural forests of Azores. Biodiversity and Conservation, 16, 2883–2901.CrossRefGoogle Scholar
  10. Castro, S. A., Daehler, C. C., Silva, L., Torres-Santana, C. W., Reyes-Betancort, J. A., Atkinson, R., Jaramillo, P., Guezou, A., & Jaksic, F. M. (2010). Floristic homogenization as a teleconnected trend in oceanic islands. Biodiversity and Conservation, 16, 902–910.Google Scholar
  11. Caujape-Castells, J., Tye, A., Crawford, D. J., Santos-Guerra, A., Sakai, A., Beaver, K., Lobin, W., Vincent Florens, F. B., Moura, M., Jardim, R., Gomes, I., & Kueffer, C. (2010). Conservation of oceanic island floras: present and future global challenges. Perspectives in Plant Ecology, Evolution and Systematics, 12, 107–112.CrossRefGoogle Scholar
  12. Chaneton, E. J., Perelman, S. B., Omacini, M., & León, R. J. C. (2002). Grazing, environmental heterogeneity, and alien plant invasions in temperate grasslands. Biological Invasions, 4, 7–24.CrossRefGoogle Scholar
  13. Chapin, F. S., Zavaleta, E. S., Eviner, V. T., Naylor, R. L., Vitousek, P. M., Reynolds, H. L., Hooper, D. U., Lavorel, S., Sala, O. E., Hobbie, S. E., Mack, M. C., & Diaz, S. (2000). Consequences of changing biodiversity. Nature, 405, 234–242.CrossRefGoogle Scholar
  14. Collinge, S. K. (2009). Ecology of fragmented landscapes. Baltimore: The John Hopkins University Press.Google Scholar
  15. Crooks, J. A. (2002). Characterizing ecosystem-level consequences of biological invasions: the role of ecosystem engineers. Oikos, 97, 153–166.CrossRefGoogle Scholar
  16. Dias, E., Elias, R. B., Melo, C., & Mendes, C. (2007). Biologia e ecologia das florestas das ilhas. In J. S. Silva (Ed.), Açores Árvores e florestas de Portugal Açores e Madeira. A floresta das ilhas Público (pp. 51–80). Portugal: Comunicação Social, SA e Fundação Luso-Americana para o desenvolvimento.Google Scholar
  17. Didham, R. K., Tylianakis, J. M., Gemmell, N. J., Rand, T. A., & Ewers, R. M. (2007). Interactive effects of habitat modification and species invasion on native species decline. Trends in Ecology & Evolution, 22, 489–496.CrossRefGoogle Scholar
  18. Dunning, J. B., Danielson, B. J., & Pulliam, H. R. (1992). Ecological processes that affect populations in complex landscapes. Oikos, 65, 169–175.CrossRefGoogle Scholar
  19. Eaton, M. A., Gregory, R. D., Noble, D. G., Robinson, J. A., Hughes, J., Procter, D., Brown, A. F., & Gibbons, D. W. (2005). Regional IUCN red listing: the process as applied to birds in the United Kingdom. Conservation Biology, 19, 1557–1570.CrossRefGoogle Scholar
  20. Flynn, D. F. B., Gogol-Prokurat, M., Nogeire, T., Molinari, N., Richers, B. T., Lin, B. B., Simpson, N., Mayfield, M. M., & DeClerck, F. (2009). Loss of functional diversity under land use intensification across multiple taxa. Ecological Letters, 12, 22–33.CrossRefGoogle Scholar
  21. Gelman, A., Carlin, J. B., Stern, H. S., & Rubin, D. B. (1995). Bayesian data analysis. London: Chapman & Hall.Google Scholar
  22. Griffiths, T. L., & Tenenbaum, J. B. (2002). Using vocabulary knowledge in Bayesian multinomial estimation. Advances in Neural Information Processing Systems, 14, 1385–1392.Google Scholar
  23. Hawksworth, D. L., & Bull, A. T. (2010). Plant conservation and biodiversity. Topics in biodiversity and conservation. The Netherlands: Springer.Google Scholar
  24. Herrick, J. E., Schuman, G. E., & Rango, A. (2006). Monitoring ecological processes for restoration projects. Journal of Nature Conservation, 14, 161–171.CrossRefGoogle Scholar
  25. Hilty, J., & Merenlender, A. (2000). Faunal indicator taxa selection for monitoring ecosystem health. Biological Conservation, 92, 185–197.CrossRefGoogle Scholar
  26. Hilty, J., Lidicker, W. Z., & Merenlender, A. M. (2006). Corridor ecology. The science and practice of linking landscapes for biodiversity conservation. Washington: Island Press.Google Scholar
  27. Hortal, J., Borges, P. A. V., & Gaspar, C. (2006). Evaluating the performance of species richness estimators: sensitivity to sampling grain size. Journal of Animal Ecology, 75, 274–287.CrossRefGoogle Scholar
  28. Huelsenbeck, J. P., & Ronquist, F. (2001). MRBAYES: Bayesian inference of phylogeny. Bioinformatics, 17, 754–755.CrossRefGoogle Scholar
  29. Kazembe, L., & Namangale, J. (2007). A Bayesian multinomial model to analyse spatial patterns of childhood co-morbidity in Malawi. European Journal of Epidemiology, 22, 545–556.CrossRefGoogle Scholar
  30. Kéry, M. (2010). Introduction to WinBUGS for ecologists. A Bayesian approach to regression, ANOVA, mixed models and related analyses. Burlington: Academic Press.Google Scholar
  31. King, R., Morgan, B. J. T., Gimenez, O., & Brooks, S. P. (2010). Bayesian analysis for population ecology. Boca Raton: Chapman & Hall.Google Scholar
  32. Kueffer, C., Daehler, C. C., Torres-Santana, C. W., Lavergne, C., Meyer, J.-Y., Otto, R., & Silva, L. (2010). Magnitude and form of invasive plant impacts on oceanic islands: a global comparison. Perspectives in Plant Ecology, Evolution and Systematics, 12, 145–161.CrossRefGoogle Scholar
  33. Laliberté, E., Wells, J. A., DeClerck, F., Metcalfe, D. J., Catterall, C. P., Queiroz, C., Aubin, I., Bonser, S. P., Ding, Y., Fraterrigo, J. M., McNamara, S., Morgan, J. W., Merlos, D. S., Vesk, P. A., & Mayfield, M. M. (2010). Land-use intensification reduces functional redundancy and response diversity in plant communities. Ecological Letters, 13, 76–86.CrossRefGoogle Scholar
  34. Lindborg, R., & Eriksson, O. (2004). Historical landscape connectivity affects present plant species diversity. Ecology, 85, 1840–1845.CrossRefGoogle Scholar
  35. Lindenmayer, D. B., & Fischer, J. (2006). Habitat fragmentation and landscape change. Washington: Island Press.Google Scholar
  36. Lourenço, P. M. R., Medeiros, V., Gil, A., & Silva, L. (2011). Distribution, habitat and biomass of Pittosporum undulatum, the most important woody plant invader in the Azores Archipelago. Forest Ecology and Management, 262, 178–187.CrossRefGoogle Scholar
  37. Marsh, H., Dennis, A., Hines, H., Kutt, A., McDonald, K., Weber, E., Williams, S., & Winter, J. (2007). Optimizing allocation of management resources for wildlife. Conservation Biology, 2, 387–399.CrossRefGoogle Scholar
  38. Martín, J. L., Borges, P. A. V., Arechavaleta, M., & Faria, B. (2008). The Top 100 List. In J. L. Martín, M. Arechavaleta, P. A. V. Borges, & B. Faria (Eds.), The 100 threatened species prioritary for management in Macaronesia (pp. 421–449). Canary Islands: Consejería de Medio Ambiente y Ordenación Territorial.Google Scholar
  39. Martín, J. L., Cardoso, P., Arechavaleta, M., Borges, P. A. V., Faria, B. F., Abreu, C., Aguiar, A. F., Carvalho, J. A., Costa, A. C., Cunha, R. T., Fernandes, F. M., Gabriel, R., Jardim, R., Lobo, C., Martins, A. M. F., Oliveira, P., Rodrigues, P., Silva, L., Teixeira, D., Amorim, I. R., Homem, N., Martins, B., Martins, M., & Mendonça, E. (2010). Using taxonomically unbiased criteria to prioritize resource allocation for oceanic island species conservation. Biodiversity and Conservation, 19, 1659–1682.CrossRefGoogle Scholar
  40. McCarthy, M. A. (2007). Bayesian methods for ecology. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  41. Naeem, S., Bunker, D. E., Hector, A., Loreau, M., & Perrings, C. (2009). Biodiversity, ecosystem functioning and human wellbeing. New York: Oxford University Press.CrossRefGoogle Scholar
  42. Noss, R. F., & Daly, K. M. (2006). Incorporating connectivity into broad-scale conservation planning. In K. R. Crooks & M. Sanjayan (Eds.), Connectivity conservation (pp. 587–619). UK: Cambridge University Press.CrossRefGoogle Scholar
  43. O’ Connor, T. G. (2005). Influence of land use on plant community composition and diversity in Highland Sourveld grassland in the southern Drakensberg, South Africa. Journal of Applied Ecology, 42, 975–988.CrossRefGoogle Scholar
  44. Panitsa, M., Koutsias, N., Tsiripidis, I., Zotos, A., & Dimopoulos, P. (2011). Species-based versus habitat-based evaluation for conservation status assessment of habitat types in the East Aegean islands (Greece). Journal for Nature Conservation, 19, 269–275.CrossRefGoogle Scholar
  45. Pellant, M., Shaver, P. & Herrick, J. E. (2005). Interpreting indicators of rangeland health. Technical reference 1734–6. Resource document. United States Department of the Interior Bureau of Land Management http://usda-arsnmsuedu/monit_assess/PDF_files/IIRHv4pdf Accessed 14 Jun 2011
  46. Pritchard, J. K., Stephens, M., & Donnelly, P. (2000). Inference of population structure using multilocus genotype data. Genetics, 155, 945–959.Google Scholar
  47. Rao, L. E., Steers, R. J., & Allen, E. B. (2011). Effects of natural and anthropogenic gradients on native and exotic winter annuals in a southern California Desert. Plant Ecology, 212, 1079–1089.CrossRefGoogle Scholar
  48. Sala, O. E., Chapin, F. S., Armesto, J. J., Berlow, E., Bloomfield, J., Dirzo, R., Huber-Sanwald, E., Huenneke, L. F., Jackson, R. B., Kinzig, A., Leemans, R., Lodge, D. M., Mooney, H. A., Oesterheld, M., Poff, N. L., Sykes, M. T., Walker, B. H., Walker, M., & Wall, D. H. (2000). Biodiversity—global biodiversity scenarios for the year 2100. Science, 287, 1770–1774.CrossRefGoogle Scholar
  49. Schippers, P., & Joenje, W. (2002). Modelling the effect of fertiliser, mowing, disturbance and width on the biodiversity of plant communities of field boundaries. Agriculture, Ecosystem & Environment, 93, 351–365.CrossRefGoogle Scholar
  50. Seabloom, E. W., Harpole, W. S., Reichman, O. J., & Tilman, D. (2003). Invasion, competitive dominance, and resource use by exotic and native California grassland species. Proceedings of the National Academy of Sciences, 100, 13384–13389.CrossRefGoogle Scholar
  51. Sherman, R., Mullen, R., Haomin, L., Zhendong, F., & Yi, W. (2008). Spatial patterns of plant diversity and communities in Alpine ecosystems of the Hengduan Mountains, northwest Yunnan, China. Journal of Plant Ecology, 1, 117–136.CrossRefGoogle Scholar
  52. Silva, L., & Smith, C. W. (2004). A characterization of the non-indigenous flora of the Azores Archipelago. Biological Invasion, 6, 193–204.CrossRefGoogle Scholar
  53. Silva, L., & Smith, C. W. (2006). A quantitative approach to the study of non-indigenous plants: an example from the Azores archipelago. Biodiversity and Conservation, 15, 1661–1679.CrossRefGoogle Scholar
  54. Silva, L., Land, E. O., & Rodríguez Luengo, J. L. (2008). Invasive terrestrial flora and fauna of Macaronesia. TOP 100 in Azores, Madeira and Canaries. Portugal: ARENA.Google Scholar
  55. Silva, L., Martins, M. C., Maciel, G. B. & Moura, M. (2010). Azorean vascular flora. Priorities in conservation Portugal: Amigos dos Açores and CCPAGoogle Scholar
  56. Spiegehalter, D. J., Best, N. G., Carlin, B. P., & van der Linde, A. (2002). Bayesian measures of model complexity and fit. Journal of the Royal Statistical Society: Series B, 64, 583–639.CrossRefGoogle Scholar
  57. Spiegehalter, D. J., Thomas, A. & Best, N. G. (2003). WinBUGS User Manual, Version 14 MCR Biostatistics Unit, CambridgeGoogle Scholar
  58. Sfenthourakis, S., & Panitsa, M. (2012). From plots to islands: species diversity at different scales. Journal of Biogeography, 39, 750–759.CrossRefGoogle Scholar
  59. Tracy, B. F., & Sanderson, M. A. (2004). Forage productivity, species evenness and weed invasion in pasture communities. Agriculture, Ecosystems and Environment, 102, 175–183.CrossRefGoogle Scholar
  60. Vasko, K., Toonen, H. T. T., & Korhola, A. (2000). A Bayesian multinomial Gaussian response model for organism-based environmental reconstruction. Journal of Paleolimnology, 24, 243–250.CrossRefGoogle Scholar
  61. Weibull, A. C., & Östman, Ö. (2003). Species composition in agroecosystems: the effect of landscape, habitat, and farm management. Basic and Applied Ecology, 4, 349–361.CrossRefGoogle Scholar
  62. Western, D. (2001). Human-modified ecosystems and future evolution. Proceedings of the National Academy of Sciences, 98, 5458–5465.CrossRefGoogle Scholar
  63. Whittaker, R. J., & Fernández-Palacios, J. M. (2007). Island biogeography—ecology, evolution and conservation. Oxford: Oxford University Press.Google Scholar
  64. Zuur, A. F., Ieno, E. N., & Smith, G. M. (2007). Analysing ecological data. New York: Springer.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • José A. P. Marcelino
    • 1
    • 2
  • Luís Silva
    • 3
  • Patricia V. Garcia
    • 1
    • 2
  • Everett Weber
    • 4
  • António O. Soares
    • 1
    • 2
  1. 1.CIRN, Department of BiologyUniversity of the AzoresPonta DelgadaPortugal
  2. 2.Azorean Biodiversity Group (GBA, CITA-A) and Portuguese Platform for Enhancing Ecological Research and Sustainability (PEERS), Departamento de Ciências AgráriasUniversidade dos AçoresAngra do HeroísmoPortugal
  3. 3.Department BiologyUniversity of the AzoresPonta DelgadaPortugal
  4. 4.Department of BiologyMurray State UniversityMurrayUSA

Personalised recommendations