Environmental Monitoring and Assessment

, Volume 185, Issue 7, pp 5965–5986 | Cite as

Monitoring the formation of structures and patterns during initial development of an artificial catchment

  • Wolfgang Schaaf
  • Michael Elmer
  • Anton Fischer
  • Werner Gerwin
  • Rossen Nenov
  • Hans Pretzsch
  • Stefan Seifert
  • Susanne Winter
  • Markus Klemens Zaplata


The objective of this paper is to present observations, results from monitoring measurements, and preliminary conclusions about the development of patterns and structures during the first 5 years of development of an artificial catchment starting from point zero. We discuss the high relevance of initial system traits and external events for the system development and draw conclusions for further research. These investigations as part of a Collaborative Research Center, aim to disentangle and understand the feedback mechanisms and interrelationships of processes and their co-development with spatial and temporal structures and patterns by studying an initial, probably less complex ecosystem. Therefore, intensive measurements were carried out in the catchment with regard to the development of surface structures, hydrological patterns, vegetation dynamics, water chemistry, and element budgets. During the first 5 years, considerable changes within the catchment were observed. Both internal and external factors could be identified as driving forces for the formation of structures and patterns in the artificial catchment. Initial structures formed by the construction process and initial substrate characteristics were decisive for the distribution and flow of water. External factors like episodic events triggered erosion and dissection during this initial phase, promoted by the low vegetation cover, and the unconsolidated sandy substrate. The transformation of the initial geosystem into areas with evolving terrestrial or aquatic characteristics and from a very episodic to a more permanent stream network and discharge, together with the observed vegetation dynamics increased site diversity and heterogeneity with respect to water and nutrient availability and transformation processes compared with the more homogenous conditions at point zero. The processes and feedback mechanisms in the initial development of a new landscape may deviate in rates, intensity, and dominance from those known from mature ecosystems. It is therefore crucial to understand these early phases of ecosystem development and to disentangle the increasingly complex interactions between the evolving terrestrial and aquatic, biotic, and abiotic compartments of the system. Long-term monitoring of initial ecosystems may provide important data and parameters on processes and the crucial role of spatial and temporal structures and patterns to solve these problems. Artificially created catchments could be a suitable tool to study these initial developments at the landscape scale under known, designed, and defined boundary conditions.


Ecosystem development Soil formation Vegetation succession Hydrology Surface structures 



The Transregional Collaborative Research Centre (CRC/TR) 38 “Structures and Processes of the Initial Ecosystem Development Phase in an Artificial Water Catchment” ( funded by the Deutsche Forschungsgemeinschaft (DFG) and by the Brandenburg Ministry of Science and Research was established in July 2007 as an initiative of three universities (BTU Cottbus, TU München, and ETH Zurich). The artificial catchment “Chicken Creek” was constructed with the technical and financial support provided by Vattenfall Europe Mining. We thank Silvio Vogt, Gunter Bormann, Uwe Enke, Patrick Willner, Ralph Dominik, and Marin Dimitrov for their help with the fieldwork, microdrone programming, routine sampling, and maintenance. Many thanks to Gabi Franke, Regina Müller, Helga Köller, Evi Müller, and Anita Maletzki for the analyses of the samples together with Nonka Markova, Natasha Beltran, Ina Hovy, Carmen Schulze, and Tsvetelina Dimitrova. Detlef Biemelt (Hydrology and Water Resources Management, BTU Cottbus) provided the meteorological and hydrological data. Thomas Seiffert carried out the georeferencing of the drone images.


  1. Amundson, R., Richter, D. D., Humphreys, G. S., Jobbágy, E. G., & Gaillardet, J. (2007). Coupling between biota and earth materials in the critical zone. Elements, 3, 327–332.CrossRefGoogle Scholar
  2. Arndt, S. K. (2006). Integrated research of plant functional traits is important for the understanding of ecosystem processes. Plant and Soil, 285(1–2), 1–3.CrossRefGoogle Scholar
  3. Baasch, A., Tischew, S., & Bruelheide, H. (2009). Insights into succession using temporally repeated habitat models: results from a long-term study in a post-mining landscape. Journal of Vegetation Science, 20, 629–638.CrossRefGoogle Scholar
  4. Badorreck, A., Gerke, H. H., & Vontobel, P. (2010). Noninvasive observation of flow patterns in locally heterogeneous mine soils using neutron radiation. Vadose Zone Journal, 9, 362–372.CrossRefGoogle Scholar
  5. Bogena, H., Schulz, K., & Vereecken, H. (2006). Towards a network of observatories in terrestrial environmental research. Advances in Geoscience, 9, 109–114.CrossRefGoogle Scholar
  6. Bormann, H. (2011). Treating an artificial catchment as ungauged: increasing the plausibility of an uncalibrated, process-based SVAT scheme by using additional soft and hard data. Physics and Chemistry of the Earth, 36, 615–629.CrossRefGoogle Scholar
  7. Bormann, H., Holländer, H. M., Blume, T., Buytaert, W., Chirico, G. B., Exbrayat, J.-F., Gustafsson, D., Hölzel, H., Kraft, P., Krauße, T., Nazemi, A., Stamm, C., Stoll, S., Blöschl, G., & Flühler, H. (2011). Comparative discharge prediction from a small artificial catchment without model calibration: representation of initial hydrological catchment development. Die Bodenkultur, 62, 23–29.Google Scholar
  8. Brantley, S. L., White, T. S., White, A. F., Sparks, D., Richter, D., Pregitzer, K., Derry, L., Chorover, J., Chadwick, O., April, R., Anerson, S., & Amundson, R. (2006). Frontiers in exploration of the critical zone: report of a workshop sponsored by the National Science Foundation (NSF), October 24–26, 2005 (p. 30). DE: Newark.Google Scholar
  9. Bresson, L.-M., & Boiffin, J. (1990). Morphological characterization of soil crust development stages on an experimental field. Geoderma, 47, 301–325.CrossRefGoogle Scholar
  10. Buczko, U., Gerke, H. H., & Hüttl, R. F. (2001). Spatial distributions of lignite mine spoil properties for simulating 2D variably saturated flow and transport. Ecological Engineering, 17, 103–114.CrossRefGoogle Scholar
  11. Campbell, J.L., Driscoll, C.T., Eagar, C., Likens, G.E., Siccama, T.G., Johnson, C.E., Fahey, T.J., Hamburg, S.P., Holmes, R.T., Bailey, A.S., & Buso, D.C. (2007). Long-term trends from ecosystem research at the Hubbard Brook Experimental Forest. Gen. Tech. Rep. NRS-17. Newtown Square, PA: U.S. Dept. Agriculture, Forest Service, Northern Research Station.Google Scholar
  12. Chadwick, O. A., & Chorover, J. (2001). The chemistry of pedogenic thresholds. Geoderma, 100, 321–353.CrossRefGoogle Scholar
  13. Deblauwe, V., Barbier, N., Couteron, P., Lejeune, O., & Bogaert, J. (2008). The global biogeography of semi-arid periodic vegetation patterns. Global Ecology and Biogeography, 17, 715–723.CrossRefGoogle Scholar
  14. Del Moral, R. (2009). Increasing deterministic control of primary succession on Mounz St. Helens, Washington. Journal of Vegetation Science, 20, 1145–1154.CrossRefGoogle Scholar
  15. Ellenberg, H., Mayer, R., & Schauermann, J. (1986). Ökosystemforschung; Ergebnisse des Sollingprojektes 1966–1986. Stuttgart: Ulmer.Google Scholar
  16. Elmer, M., Schaaf, W., Biemelt, D., Gerwin, W. Hüttl, R.F. (eds.) (2011) The artificial catchment Chicken Creek—initial ecosystem development 2005–2010: Ecosystem Development, 3 (urn:nbn:de:kobv:co1-opus-23730), Cottbus, pp. 162Google Scholar
  17. Fischer, T., Veste, M., Schaaf, W., Bens, O., Dümig, A., Kögel-Knabner, I., Wiehe, W., & Hüttl, R. F. (2010). Pedogenesis in a topsoil crust three years after construction of an artificial catchment in Brandenburg, NE Germany. Biogeochemistry, 101, 165–176.CrossRefGoogle Scholar
  18. Fischer, T., Veste, M., Wiehe, W., & Lange, P. (2010). Water repellency and pore clogging at early successional stages of microbiotic crusts on inland dunes, Brandenburg, NE Germany. Catena, 80, 47–52.CrossRefGoogle Scholar
  19. Kappen, L., Blume, H.-P., & Dierssen, K. (Eds.). (2008). Ecosystem organization of a complex landscape; long-term research in the Bornhöved Lake District, Germany (Ecological Studies, Vol. 202). Berlin: Springer.Google Scholar
  20. Gast, M., Schaaf, W., Wilden, R., Scherzer, J., Schneider, B. U., & Hüttl, R. F. (2001). Water and element budgets of pine stands on lignite and pyrite containing mine soils. Journal of Geochemical Exploitation, 73, 63–74.CrossRefGoogle Scholar
  21. Gerwin, W., Schaaf, W., Biemelt, D., Elmer, M., Maurer, T., & Schneider, A. (2010). The artificial catchment ‘Hühnerwasser’ (Chicken Creek): construction and initial properties. Ecosystem Development, 1, 56.Google Scholar
  22. Gerwin, W., Schaaf, W., Biemelt, D., Fischer, A., Winter, S., & Hüttl, R. F. (2009). The artificial catchment “Chicken Creek” (Lusatia, Germany)—a landscape laboratory for interdisciplinary studies of initial ecosystem development. Ecological Engineering, 35, 1786–1796.CrossRefGoogle Scholar
  23. Gerwin, W., Schaaf, W., Biemelt, D., Winter, S., Fischer, A., Veste, M., & Hüttl, R. F. (2011). Overview and first results of ecological monitoring at the artificial watershed Chicken Creek (Germany). Physics and Chemistry of the Earth, 36, 61–73.CrossRefGoogle Scholar
  24. Grayson, R. B., Blöschl, G., Western, A. W., & McMahon, T. A. (2002). Advances in the use of observed spatial patterns of catchment hydrological response. Advances in Water Resources, 25, 1313–1334.CrossRefGoogle Scholar
  25. Groffman, P. M., Baron, J. S., Blett, T., Gold, A. J., Goodman, I., Gunderson, L. H., Levinson, B. M., Palmer, M. A., Paerl, H. W., Peterson, G. D., Poff, N. L., Rejeski, D. W., Reynolds, J. F., Turner, M. G., Weathers, K. C., & Wiens, J. (2006). Ecological thresholds. The key to successful environmental management or an important concept with no practical application? Ecosystems, 9, 1–13.CrossRefGoogle Scholar
  26. Hofer, M., Lehmann, P., Biemelt, D., Stähli, M., & Krafczyk, M. (2011). Modelling subsurface drainage pathways in an artificial catchment. Physics and Chemistry of the Earth, 36, 101–112.CrossRefGoogle Scholar
  27. Holländer, H. M., Blume, T., Bormann, H., Buytaert, W., Chirico, G. B., Exbrayat, J.-F., Gustafsson, D., Hölzel, H., Kraft, P., Stamm, C., Stoll, S., Blöschl, G., & Flühler, H. (2009). Comparative predictions of discharge from an artificial catchment (Chicken Creek) using sparse data. Hydrology and Earth System Science, 13, 2069–2094.CrossRefGoogle Scholar
  28. Hölzel, H., Rössler, O., & Diekkrüger, B. (2011). Grope in the dark—hydrological modelling of the artificial Chicken Creek catchment without validation possibilities. Physics and Chemistry of the Earth, 36, 113–122.CrossRefGoogle Scholar
  29. Jørgensen, S. E., Patten, B. C., & Straškraba, M. (2000). Ecosystem emerging: 4. Growth. Ecological Modelling, 126, 249–284.CrossRefGoogle Scholar
  30. Jørgensen, S. E. (Ed.). (2009). Ecosystem ecology (p. 521). Amsterdam: Elsevier.Google Scholar
  31. Kelly, E., Chadwick, O. A., & Hilinski, T. E. (1998). The effect of plants on mineral weathering. Biogeochemistry, 42, 21–53.CrossRefGoogle Scholar
  32. Kendzia, G., Reißmann, R., & Neumann, T. (2008). Targeted development of wetland habitats for nature conservation fed by natural inflow in the post-mining landscape of Lusatia. World of Mining—Surface & Underground, 60(2), 88–95.Google Scholar
  33. Kirchner, J. W. (2009). Catchments as simple dynamic systems: catchment characterization, rainfall-runoff modelling, and doing hydrology backward. Water Resources Research, 45, W02429. doi: 10.1029/2008WR006912.CrossRefGoogle Scholar
  34. Krümmelbein, J., Horn, R., Raab, T., Bens, O., & Hüttl, R. F. (2010). Soil physical parameters of a recently established agricultural recultivation site after brown coal mining in Eastern Germany. Soil & Tillage Research, 111, 19–25.CrossRefGoogle Scholar
  35. Lambers, H., Mougel, C., Jaillard, B., & Hinsinger, P. (2009). Plant–microbe–soil interactions in the rhizosphere: an evolutionary perspective. Plant and Soil, 321, 85–115.CrossRefGoogle Scholar
  36. Likens, G. E., & Haeuber, R. (2007). Who needs environmental monitoring? Frontiers in Ecology and the Environment, 5, 253–260.CrossRefGoogle Scholar
  37. Likens, G. E. (1999). The science of nature, the nature of science: long-term ecological studies at Hubbard Brook. Proceedings of the American Philosophical Society, 143, 558–572.Google Scholar
  38. Likens, G. E., & Bormann, F. H. (1995). Biogeochemistry of a forested ecosystem. New York: Springer. 159 pp.CrossRefGoogle Scholar
  39. Lindenmayer, D. B., & Likens, G. E. (2009). Adaptive monitoring: a new paradigm for long-term research and monitoring. Trends in Ecology & Evolution, 24, 482–486.CrossRefGoogle Scholar
  40. Littmann, T., Hering, E., & Koch, S. (2000). What happens to rainfall at the desert margin? Water infiltration experiments in a sandy arid area. Hallesches Jahrbuch für Geowissenschaften, 22, 49–58.Google Scholar
  41. Lovett, G. M., Burns, D. A., Driscoll, C. T., Jenkins, J. C., Mitchell, M. J., Rustad, L., Shanley, J. B., Likens, G. E., & Haeuber, R. (2007). Who needs environmental monitoring? Frontiers in Ecology and the Environment, 5(5), 253–260.CrossRefGoogle Scholar
  42. Ludwig, J. A., Wiens, J. A., & Tongway, D. J. (2000). A scaling rule for landscape patches and how it applies to conserving soil resources in savannas. Ecosystems, 3, 84–97.CrossRefGoogle Scholar
  43. Mazur, K., Schönheinz, D., Biemelt, D., Schaaf, W., & Grünewald, U. (2010). Observation of hydrological processes and structures in the artificial Chicken Creek catchment. Physics and Chemistry of the Earth, 36, 74–86.CrossRefGoogle Scholar
  44. McClain, M. E., Boyer, E. W., Dent, C. L., Gergel, S. E., Grimm, N. B., Groffman, P. M., Hart, S. C., Harvey, J. W., Johnston, C. A., Mayorga, E., McDowell, W. H., & Pinay, G. (2003). Biogeochemical hot spots and hot moments at the interface of terrestrial and aquatic ecosystems. Ecosystems, 6, 301–312.CrossRefGoogle Scholar
  45. Neal, C., Reynolds, B., Neal, M., Hill, L., Wickham, H., & Pugh, B. (2003). Nitrogen in rainfall, cloud water, throughfall, stemflow, stream water and groundwater for the Plynlimon catchments of mid-Wales. Science of the Total Environment, 314–316, 121–151.CrossRefGoogle Scholar
  46. Nisbet, E. (2007). Cinderella science. Nature, 450, 789–790.CrossRefGoogle Scholar
  47. Parr, T. W., Ferretti, M., Simpson, I. C., Forsius, M., & Kovacs-Lang, E. (2002). Towards a long-term integrated monitoring programme in Europe: network design in theory and practice. Environmental Monitoring and Assessment, 78, 253–290.CrossRefGoogle Scholar
  48. Pennisi, E. (2010). A groundbreaking observatory to monitor the environment. Science, 328, 418–420.CrossRefGoogle Scholar
  49. Roering, J. J., Marshall, J., Booth, A. M., Mort, M., & Hin, Q. (2010). Evidence for biotic controls on topography and soil production. Earth and Planetary Science Letters, 298, 183–190.CrossRefGoogle Scholar
  50. Rudolph, B., & Rubel, F. (2005). Global precipitation. In M. Hantel (Ed.), Observed global climate. Geophysics, vol. 6. Berlin: Springer.Google Scholar
  51. Schaaf, W., & Hüttl, R. F. (2006). Direct and indirect effects of soil pollution by lignite mining. Water Air and Soil Pollution—Focus, 6, 253–264.Google Scholar
  52. Schaaf, W., Biemelt, D., Hüttl, R.F. (Eds.) (2010). Initial development of the artificial catchment ´Chicken Creek’—monitoring program and survey 20052008. Ecosystem Development, vol. 2, 190 ppGoogle Scholar
  53. Schaaf, W., Bens, O., Fischer, A., Gerke, H. H., Gerwin, W., Grünewald, U., Holländer, H. M., Kögel-Knabner, I., Mutz, M., Schloter, M., Schulin, R., Veste, M., Winter, S., & Hüttl, R. F. (2011). Patterns and processes of initial terrestrial ecosystem development. Journal of Plant Nutrition and Soil Science, 174, 229–239.CrossRefGoogle Scholar
  54. Schaub, M., Dobbertin, M., Kräuchi, N., & Dobbertin, M. K. (2011). Preface—long-term ecosystem research: understanding the present to shape the future. Environmental Monitoring and Assessment, 174, 1–2.CrossRefGoogle Scholar
  55. Schleppi, P., Muller, N., Feyern, H., Papritz, A., Bucher, J. B., & Fluhler, H. (1998). Nitrogen budgets of two small experimental forested catchments at Alptal, Switzerland. Forest Ecology and Management, 101, 177–185.CrossRefGoogle Scholar
  56. Torrent, J., & Nettleton, W. D. (1978). Feedback processes in soil genesis. Geoderma, 20, 281–287.CrossRefGoogle Scholar
  57. Sun, G.-Q., Jin, Z., & Tan, Q. (2010). Measurement of self-organization in arid ecosystems. Journal of Biological Systems, 18, 495–508.CrossRefGoogle Scholar
  58. Tietjen, B., Jeltsch, F., Zehe, E., Classen, N., Groengroeft, A., Schiffers, K., & Oldeland, J. (2010). Effects of climate change on the coupled dynamics of water and vegetation in drylands. Ecohydrology, 3, 226–237. doi: 10.1002/eco.70.Google Scholar
  59. van Breemen, N., Finlay, R., Lundström, U., Jongmans, A. G., Giesler, R., & Olsson, M. (2000). Mycorrhizal weathering. A true case of mineral plant nutrition? Biogeochemistry, 49, 53–67.CrossRefGoogle Scholar
  60. van de Koppel, J., & Rietkerk, M. (2000). Herbivore regulation and irreversible vegetation change in semi-arid grazing systems. Oikos, 90, 253–260.CrossRefGoogle Scholar
  61. Wagner, A. (2009). Literature study on the correction of precipitation measurements. Bavarian State Institute of Forestry. FutMin C1-Met-29(BY)Google Scholar
  62. Waide, R., French, C., Sprott, P. Williams, L. (1998). The International Long Term Ecological Research Network 1998. US LTER Network, Department of Biology, University of New MexicoGoogle Scholar
  63. Wellbrock, N., Rick, W., & Wolff, B. (2005). Characterisation of and changes in the atmospheric deposition situation in German forest ecosystems using multivariate statistics. European Journal of Forest Research, 124, 261–271.CrossRefGoogle Scholar
  64. Yair, A., Veste, M., Almo, G. R., & Breckle, S. (2008). Geo-ecology characteristics and sensitivity of a sandy area to climate change along a rainfall gradient at a desert fringe. In S. W. Breckle, A. Yair, & M. Veste (Eds.), Arid dune ecosystems—the Nizzana sands in the Negev Desert (Ecological studies, Vol. 200). Berlin: Springer.Google Scholar
  65. Zaplata, M.K., Fischer, A. Winter S. (2010). Vegetation dynamics. Ecosystem Development, vol. 2, pp. 71–96Google Scholar
  66. Zaplata, M. K., Winter, S., Biemelt, D., & Fischer, A. (2011). Immediate shift towards source dynamics: the pioneer species Conyza canadensis in an initial ecosystem. Flora, 206, 928–934.CrossRefGoogle Scholar
  67. Zaplata, M.K., Winter, S., Fischer, A., Kollmann, J. Ulrich, W. (2012). Species-driven phases and increasing structure in early-succesional plant communities. The American Naturalist (in press)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Wolfgang Schaaf
    • 1
  • Michael Elmer
    • 2
  • Anton Fischer
    • 3
  • Werner Gerwin
    • 2
  • Rossen Nenov
    • 2
  • Hans Pretzsch
    • 4
  • Stefan Seifert
    • 4
    • 5
  • Susanne Winter
    • 3
  • Markus Klemens Zaplata
    • 3
  1. 1.Soil Protection and RecultivationBrandenburg University of TechnologyCottbusGermany
  2. 2.Research Centre Landscape Development and Mining LandscapesBrandenburg University of TechnologyCottbusGermany
  3. 3.GeobotanyTechnische Universität MünchenMunichGermany
  4. 4.Chair of Forest Growth and Yield ScienceTechnische Universität MünchenMunichGermany
  5. 5.Department of Forest and Wood ScienceStellenbosch UniversityStellenboschSouth Africa

Personalised recommendations