Environmental Monitoring and Assessment

, Volume 185, Issue 6, pp 5231–5242 | Cite as

Interrelationships of pollution load index, transfer factor, and concentration factor under the effect of sludge

  • Georgia Ntzala
  • Prodromos H. Koukoulakis
  • Aristotelis H. Papadopoulos
  • Michalis Leotsinidis
  • Eleni Sazakli
  • Ioannis K. Kalavrouziotis


A greenhouse experiment was conducted during 2010–2011. A complete randomized blocks design was used including seven treatment levels of sludge(tons per hectare), i.e., 0, 6, 12, 18, 24, 30, and “30+ treated wastewater”, in four replications. Lettuce (Lactuca sativa L var longifolia) was chosen as a test plant. The purpose of the experiment was to study the relationships between soil Pollution Load Index, heavy metal transfer factor, and concentration factor and to determine optimum concentration factor values. The following were found: several mathematical relationships were established between the above parameters that could be used for the study of heavy metal accumulation in soils and plants under the effect of the applied sludge. They can be also used for the calculation of one of the above parameters as a function of the others. Based on the experimental data, the optimum concentration factor for several heavy metals were determined by multiple linear regression analysis, expressing the concentration factor as a function of the maximum dry lettuce matter yield, and of optimum/minimum heavy metal content of plant dry matter. The mean value of the calculated concentration factor obtained for each separate metal was: Zn, 2.93; Cd, 0.39; Co, 1.47; and Ni, 0.52.


Heavy metals Lettuce Sludge treatments Soil Plant growth Pollution Load Index Transfer factor Concentration factor 


  1. Adriano, D. C. (2001). Trace elements in terrestrial environment: biochemistry, bioavailabiolity and risks of metals (2nd ed.). New York: Springer.CrossRefGoogle Scholar
  2. AOAC. (1996). Official methods of analysis of Association of Official Agricultural Chemists AOAC International (16th ed., pp. 2027–2417). Gaithersburg: Publication International.Google Scholar
  3. APHA. (1992). Standard methods for examination of water and wastewater. Method 3110, American Public Health Association AWWA WEF (18th ed.). Washington: American Public Health Association.Google Scholar
  4. Cabrera, F., Clemente, L., Diaz Barrientos, E., Lopez, R., & Murillo, J. M. (1999). Heavy metal pollution of soils affected by the Guadiamar toxic flood. The Science of the Total Environment, 242, 117–129.CrossRefGoogle Scholar
  5. Chang, A. C., Granato, T. C., & Page, A. L. (1992). Amethodology for establishing phytotoxicity criteria for chromium, copper, nickel and zinc in agricultural land application of municipal sewge sludge. Journal of Environmental Quality, 21, 521–536.CrossRefGoogle Scholar
  6. Cui, Y., Zhu, Y.-G., Zhai, R., Huang, Y., Qiu, Y., & Liand, J. (2005). Exposure to metal mixtures and human health impacts in a contaminated area in Nanning, China. Environmental International, 31, 784–790.CrossRefGoogle Scholar
  7. Ganesh, K. S., Baskaran, L., Rajasekaran, S., Sumathi, K., Chidambaram, A. L., & Sundaramoorthy, P. (2008). Chromium stress induced alterations in biochemical and enzyme metabolism in aquatic and terrestrial plants. Colloids Surfaces, 63(2), 159–163.CrossRefGoogle Scholar
  8. Gopal, R., & Risvi, A. H. (2008). Excess lead alters growth, metabolism and translocation of certain nutrients in radish. Chemosphere, 70, 1539–1544.CrossRefGoogle Scholar
  9. Granero, S., & Domingo, J. L. (2002). Levels of metals in Alcala de Henares Spain: human health risks. Environmental International, 28, 159–164.CrossRefGoogle Scholar
  10. Hattab, S., Chouba, L., Ben Kheder, M., Mahouachi, T., & Bousseta, H. (2009). Cadmium and copper induced DNA damage in Pissum sativum root and leaves, as determined by the comet assay. Plant Biosystems, 143, S6–S11.CrossRefGoogle Scholar
  11. Jackson, M. L. (1958). Soil chemical analysis (pp. 1–250). Englewood Cliffs: Prentice Hall.Google Scholar
  12. Jarup, L. (2003). Hazards of heavy metal contamination. British Medical Bulletin, 68, 167–182.CrossRefGoogle Scholar
  13. Kalavrouziotis, I. K., & Koukoulakis, P. H. (2012). Soil pollution under the effect of treated municipal wastewater. International Journal Environmental Monitoring and Assessment 184, 6297–6305. doi: 10.1007/s10661-011-2420-0.
  14. Kalavrouziotis, I. K., Koukoulakis, P. H., & Kostakioti, E. (2011). Assesment of metal transfer factor under irrigation with treated municipal wastewater. International Journal Agricultural Water Management, 103, 114–119.CrossRefGoogle Scholar
  15. Kalavrouziotis, I. K., Koukoulakis, P. H., & Kostakioti, E. (2012). Assessment of metal transfer factor under irrigation with treated municipal wastewater. Agricultural Water Management, 103, 114–119.CrossRefGoogle Scholar
  16. Lanyon, L. E., & Heald, W. R. (1982). Magnesium, calcium strontium, and barium. In A. L. Page et al. (Eds.), Methods of soil analysis part 2 (pp. 247–262). Madison: ASA.Google Scholar
  17. Li, Q., Cai, S., Mo, C., Chu, B., Peng, L., & Yang, F. (2010). Toxic effects of heavy metals and their accumulation in vegetables, grown in saline soil. Ecotoxicology and Environmental Safety, 73, 84–88.CrossRefGoogle Scholar
  18. Lindsay, W. L., & Norvell, W. A. (1978). Development of DTPA micronutrient soil test for zinc, iron manganese and copper. Soil Science Society of American Journal, 42, 421–428.CrossRefGoogle Scholar
  19. Liu, W. H., Zhao, J. Z., Ouyang, Z. Z., Suderlund, L., & Liu, G. H. (2005). Impacts of sewage irrigation on heavy metal distribution and contamination in Beijing. China Environment International, 31, 805–812.CrossRefGoogle Scholar
  20. McGrath, S. P., Chang, A. C., Page, A. L., & Witter, E. (1994). Land application of sewge sludge, scientific perspectives of heavy metal loading limits in Europe and in the United States. Environmental Review, 2, 108–118.CrossRefGoogle Scholar
  21. Mills, H. A., Benton Jones Jr, J., (1996). Plant Analysis Handbook. Athens, GA: MicroMacro Publishing Inc., p. 345.Google Scholar
  22. Murzaeva, S. V. (2004). Effext of heavy metal on wheat seedlings:activation of antioxidant enzymes. Applied Biochemistry and Microbiology, 40, 98–103.CrossRefGoogle Scholar
  23. Nan, Z., Zhao, Z., Liu, X., Saha, U. K., MaLena, Q., Clarke-Sather, et al. (2010). The uptake and translocation of selected elements by cole (Brassica) grown using oasis soils in pot experiments. Toxicological and Environmental Chemistry, 92(8), 1541–1549.CrossRefGoogle Scholar
  24. Oliver, M. A. (1997). Soil and human health. European Journal of Soil Science, 48, 573–592.CrossRefGoogle Scholar
  25. Olsen, S. R., Cole, C. V., Watanabe, F. S., & Dean, L. A. (1954). Estimation of available phosphorus in soils by extraction with sodium bicarbonate, USDA Circular Number 939. Washington DC: U.S. Government Printing Office.Google Scholar
  26. Ouzounidou, G., Mustakas, M., & Eleftheriou, E. R. (1997). Physiological and ultrastructural effects of cadmium on wheat (Triticum aestivum L) leaves. Archives of Contamination and Toxicology, 32, 154–160. doi: 10.1007/s002449900168.CrossRefGoogle Scholar
  27. Panda, S. K., Chaudhry, I., & Khan, M. H. (2003). Heavy metals induce lipid peroxidation, and affect antioxidants in wheat leaves Biologia Plantgum 46, 289–294. doi: 10.1023/A:1022871131698.
  28. Pereira, B. F. F., He, Z. L., Stoffela, P. J., & Melfi, A. J. (2011). Reclaimed wastewater effects on citrus nutrition. Agricultural Water Management, 98, 1828–1833.CrossRefGoogle Scholar
  29. Richards, I. A. (1954). Diagnosis and improvement of alkaline and sodic soils. Agric. Handbook No 60 (p. 84). Washington DC: USDA.Google Scholar
  30. Singh, R. P., & Agrawal, M. (2010). Variation in heavy metal accumulation, growth and yield of rice plants, grown at different sewage sludge amendment rates. Ecology and Environmental Safety, 73, 632–641.CrossRefGoogle Scholar
  31. Sinha, S., Sinam, G., Mishra, K. R., & Mallick, S. (2010). metal accumulation, growth, antioxidants, and oil yield of Brassica juncea L, exposed to different metals. Ecotoxicology and Environmental Safety, 73, 1352–1361.CrossRefGoogle Scholar
  32. Soltanpour, P. N., Johnson, C. W., Workman, S. M., Jones, J. B., Jr., & Miller, R. O. (1998). Advances in ICP emission and ICP mass spectroscopy. Advances in Agronomy, 64, 28–113.CrossRefGoogle Scholar
  33. Tomlison, L., Wilson, G., Harris, R., & Jeffrey, D. W. (1980). Problems in the assessment of heavy metal levels in estuaries and formation of pollution index. Helgol Meeresunters, 33, 566–575.CrossRefGoogle Scholar
  34. Ure, A. M. (1995). Methods of analysis for heavy metals in soils. In B. J. Alloway (Ed.), Heavy metals in soil (2nd ed., p. 58). London: Blackie.CrossRefGoogle Scholar
  35. Uveges, J. L., Cprbett, A. L., & Mal, T. K. (2002). Effects of Pb contamination on the growth of Lythrum salicaria. Environmental Pollution, 120, 319–323.CrossRefGoogle Scholar
  36. WHO. (1992). Cadmium, environmental health criteria. Geneva World Health Organization, 134, 1–280.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Georgia Ntzala
    • 1
  • Prodromos H. Koukoulakis
    • 2
  • Aristotelis H. Papadopoulos
    • 3
  • Michalis Leotsinidis
    • 4
  • Eleni Sazakli
    • 4
  • Ioannis K. Kalavrouziotis
    • 1
  1. 1.Department of Environmental and Natural Resources ManagementUniversity of Western GreeceAgrinionGreece
  2. 2.Soil Science InstituteThessalonikiGreece
  3. 3.Soil Science Institute of ThessalonikiThermiGreece
  4. 4.School of Medicine and Public Health LaboratoryUniversity of PatrasPatrasGreece

Personalised recommendations