Environmental Monitoring and Assessment

, Volume 185, Issue 6, pp 4745–4752 | Cite as

Unique phenotypes in the sperm of the earthworm Eudrilus eugeniae for assessing radiation hazards

  • Beryl Vedha Yesudhason
  • Jothipandi Jegathambigai
  • Pon Amutha Thangasamy
  • Durga Devi Lakshmanan
  • Johnson Retnaraj Samuel Selvan Christyraj
  • Emmanuel Joshua Jebasingh Sathya Balasingh Thangapandi
  • Muthukalingan Krishnan
  • Sudhakar Sivasubramaniam


The earthworm, Eudrilus eugeniae is a segmented worm. It has two pairs of testes whose cells are highly proliferative. It was found that the earthworm, which is irradiated with X-ray, shows the following phenotypic changes in its sperm: fragmented acrosome in the head, break in the tail, and the appearance of zigzag sperm tail. Sperm morphology can be used as a tool to study radiation hazards in local areas. These three phenotypes were not observed in the sperm of worms exposed to different concentration of toxic chemicals such as sodium arsenate, lead acetate, and mercuric chloride. In contrast, exposure of worms to ethidium bromide caused fragmented acrosome in the head of their sperm cells.


Earthworm Testis Radiation hazards Sperm 



This project was financially supported by UGC (University Grants Commission), New Delhi and the Department of Biotechnology (DBT), New Delhi.


  1. Abbasi, S. A., & Soni, R. (1983). Stress induced enhancement of reproduction in earthworm Octochaetus pattoni exposed to chromium (VI) and mercury (III) implications environmental management. Journal of Environmental Studies, 22, 43–47.CrossRefGoogle Scholar
  2. Abu, T. K., & Judith, S. W. (1987). Toxic effects of mercuric chloride on sperm and egg viability of two populations of mummichog, Fundulus heteroclitus. Environmental Pollution, 48(4), 263–273.CrossRefGoogle Scholar
  3. Acharya, U. R., Acharya, S., & Mishra, M. (2003). Lead acetate induced cytotoxicity in male germinal cells of Swiss mice. Industrial Health, 41, 291–294.CrossRefGoogle Scholar
  4. Al-Omar, M. A., Abbas, A. K., & Al-Obaidy, S. A. (2000). Combined effect of exposure to lead and chlordane on the testicular tissues of Swiss mice. Toxicology Letters, 10, 1–8.CrossRefGoogle Scholar
  5. Atef, M., Youssef, S., Ramadan, A., Nawito, M., El-Sayed, M., & Abdel-Rahman, H. (1995). Influence of phoxim on testicular and seminal vesicle organs, testosterone and cholinesterase level and its tissue residues in male rat. Deutsche Tierärztliche Wochenschrift, 702, 1–5.Google Scholar
  6. Beyer, W. N., & Cromartie, E. J. (1987). A survey of Pb, Cu, Zn, Cd, Cr, As, and Se in earthworms and soil from diverse sites. Environmental Monitoring and Assessment, 8, 27–36.CrossRefGoogle Scholar
  7. Bustos-Obregón, E., & Díaz, O. (1999). Ultra structure of mouse teratozoospermia induced by parathion. Asian Journal of Andrology, 1, 79–80.Google Scholar
  8. Calahan, C. A. (1988). Earthworms as ecotoxicological assessement tools. In C. A. Edwards & E. F. Neuhauser (Eds.), Earthworms in waste and environmental management (pp. 295–301). The Hague: SPB Academic Publishing.Google Scholar
  9. Chowdhury, M. I., Kamal, M., Alam, M. N., Yeasmin, S., & Mostafa, M. N. (2005). Distribution of naturally occuring radionuclides in soils of the southern districts of Bangladesh. Radiation Protection Dosimetry, 118(1), 26–30.CrossRefGoogle Scholar
  10. Cikutovic, M. A., Fitzpartrick, L. C., Venables, B. J., & Goven, A. J. (1993). Sperm count in earthworm (Lumbricus terrestris) as a biomarker for environmental toxicology: effects of cadmium and chlordane. Environmental Pollution, 81, 123–125.CrossRefGoogle Scholar
  11. Corp, N., & Morgan, A. J. (1991). Accumulation of heavy metals from polluted soils by the earthworm, Lumbricus rubellus: can laboratory exposure of ‘control’ worms reduce biomonitoring problems? Environmental Pollution, 74, 39–52.CrossRefGoogle Scholar
  12. Corpas, I., Gaspar, I., Martinez, S., Codesa, J., Candelas, S., & Antonio, M. (1995). Testicular alterations in rats due to gestational and early lactational administration of lead. Reproductive Toxicology, 14, 57–62.Google Scholar
  13. Corpas, I., Castillo, M., Marquina, D., & Benito, M. J. (2002). Lead intoxication in gestational and lactation periods alters the development of male reproductive organs. Ecotoxicology and Environmental Safety, 53, 259–266.CrossRefGoogle Scholar
  14. Dominguez, J., Edwards, C. A., & Ashby, J. (2001). The biology and population dynamics of Eudrilus eugeniae (Kinberg) (Oligochaeta) in cattle waste solids. Pedobiologia, 45, 341–353.CrossRefGoogle Scholar
  15. Friedler, G. (1996). Paternal exposures: impact on reproductive and developmental outcome. An overview. Pharmacology Biochemistry and Behavior, 55(4), 691–700.CrossRefGoogle Scholar
  16. Goats, G. C., & Edward, C. A. (1988). A prediction of field toxicity of chemicals to earthworms by laboratory methods. In C. A. Edwards & E. F. Neuhauser (Eds.), Earthworms in waste and environmental management (pp. 283–294). The Hague: SPB Academic Publishing.Google Scholar
  17. Heimbach, F. (1992). Correlation between data from laboratory and field tests for investigating the toxicity of pesticides for earthworms. Soil Biology and Biochemistry, 24, 1749–1750.CrossRefGoogle Scholar
  18. Hertel-Aas, T., Brunborg, G., et al. (2007). Effects of different gamma exposure regimes on reproduction in the earthworm Eisenia fetida (Oligochaeta). Science of the Total Environment, 412–413, 138–147.Google Scholar
  19. Jockenhovel, F., Bals-Pratsch, M., et al. (1990). Seminal lead and copper in fertile and infertile men. Andrologia, 22(6), 503–511.CrossRefGoogle Scholar
  20. Kruger, E., Hinssen, H., et al. (2008). Involvement of a gelsolin-related protein in spermatogenesis of the earthworm Lumbricus terrestris. Cell and Tissue Research, 332(1), 141–150.CrossRefGoogle Scholar
  21. Kubista, M., Akerman, B., et al. (1987). Characterization of interaction between DNA and 4′,6-diamidino-2-phenylindole by optical spectroscopy. Biochemistry, 26(14), 4545–4553.CrossRefGoogle Scholar
  22. Lawrence, M. E., & Possingham, J. V. (1986). Direct measurement of femtogram amounts of DNA in cells and chloroplasts by quantitative microspectrofluorometry. Journal of Histochemistry and Cytochemistry, 34(6), 761–768.CrossRefGoogle Scholar
  23. Lee, K. E. (1985). Earthworms: the ecology and relationship with soil and land use (pp. 1–420). New York: Academic.Google Scholar
  24. Lunn, G. (1990). Decontamination of ethidium bromide spills. Trends in Genetics, 6(2), 31.CrossRefGoogle Scholar
  25. Morikawa, K., & Yanagida, M. (1981). Visualization of individual DNA molecules in solution by light microscopy: DAPI staining method. Journal of Biochemistry, 89(2), 693–696.Google Scholar
  26. Mullenders, L., Atkinson, M., et al. (2009). Assessing cancer risks of low-dose radiation. Nature Reviews Cancer, 9(8), 596–604.CrossRefGoogle Scholar
  27. Nakamori, T., Kubota, Y., Ban-nai, Y., & Yoshida, S. (2009). Effects of acute gamma irradiation on soil invertebrates in laboratory tests. Radioprotection, 44, 421–424.CrossRefGoogle Scholar
  28. Neel, J. V., Schull, W. J., et al. (1990). The children of parents exposed to atomic bombs: estimates of the genetic doubling dose of radiation for humans. American Journal of Human Genetics, 46(6), 1053–1072.Google Scholar
  29. Otitoloju, A. A. (2005). Stress indicators in earthworm Eudrilus eugeniae inhabiting a crude oil contaminated ecosystem. Acta SATECH, 2, 1–5.Google Scholar
  30. Reinecke, S. A., & Reinecke, A. J. (1997). The influence of lead and manganese on spermatozoa of Eisenia fetida (Oligochaeta). Soil Biology and Biochemistry, 29, 737–742.CrossRefGoogle Scholar
  31. Reinecke, S. A., Reinecke, A. J., & Froneman, M. L. (1995). The effects of dieldrin on the sperm ultrastructure of the earthworm Eudrilus eugeniae (Oligochaeta). Environmental Toxicology and Chemistry, 14, 961–965.Google Scholar
  32. Rikmenspoel, R., & Van Herpen, G. (1969). Radiation damage to bull sperm motility. II. Proton irradiation and respiration measurements. Biophysical Journal, 9(6), 833–844.CrossRefGoogle Scholar
  33. Rodriguez, H., & Bustos-Obregon, E. (2000). An in vitro model to evaluate the effect of an organophosphoric agropesticide on cell proliferation in mouse seminiferous tubules. Andrologia, 32, 1–5.Google Scholar
  34. Rongquan, Z., & Canyang, L. (2009). Effect of lead on survival, locomotion and sperm morphology of Asian earthworm, Pheretima guillelmi. Journal of Environmental Sciences, 21(5), 691–695.CrossRefGoogle Scholar
  35. Segun, A. O. (1998). Tropical zoology (2nd ed., p. 283). Ibadan: University Press.Google Scholar
  36. Shagoti, U. M. (1985). Analysis of developmental rates and body size in earthworms. Heredity, 80, 29–40.Google Scholar
  37. Steenbergen, N. T., Laccino, F., et al. (2005). Development of a biotic ligand model and a regression model predicting acute copper toxicity to the earthworm Aporrectodea caliginosa. Environmental Science and Technology, 39(15), 5694–5702.CrossRefGoogle Scholar
  38. Troyer, D. (1980). Spermiogenesis in lumbricid earthworms revisited. II. Elongation and shortening of the spermatid nucleus and the roles of microtubules and chromatin in organelle shaping. Biologie Cellulaire, 37, 287–292.Google Scholar
  39. Troyer, D., & Cameron, M. L. (1980). Spermiogenesis in lumbricid earthworms revisited. I. Function and fate of centrioles, fusion of organelles and organelle movement. Biologie Cellulaire, 37, 273–286.Google Scholar
  40. Van Gestel, C. A. M., & Ma, W.-C. (1993). Development of QSAR’s in soil ecotoxicology: earthworm toxicity and soil sorption of chlorophenols, chlorobenzenes and chloroanilines. Water, Air, and Soil Pollution, 69, 265–276.CrossRefGoogle Scholar
  41. Viljoen, S. A., & Reinecke, A. J. (1992). The temperature requirements of epigeic earthworm species Eudrilus eugeniae (Oligochaete); a laboratory study. Soil Biology and Biochemistry, 24, 1345–1350.CrossRefGoogle Scholar
  42. Zaini, H., Ahmad, S., Noor, H. M., & She, D. R. (2008). Surface radiation dose and radionuclide measurement in ex-tin mining area, Kg Gajah, Perak. The Malaysian Journal of Analytical Sciences, 12(2), 419–431.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Beryl Vedha Yesudhason
    • 1
  • Jothipandi Jegathambigai
    • 1
  • Pon Amutha Thangasamy
    • 1
  • Durga Devi Lakshmanan
    • 1
  • Johnson Retnaraj Samuel Selvan Christyraj
    • 1
  • Emmanuel Joshua Jebasingh Sathya Balasingh Thangapandi
    • 1
  • Muthukalingan Krishnan
    • 2
  • Sudhakar Sivasubramaniam
    • 1
  1. 1.Department of BiotechnologyManonmaniam Sundaranar UniversityTamilnaduIndia
  2. 2.Department of Environmental BiotechnologyBharathidasan UniversityTamilnaduIndia

Personalised recommendations