Environmental Monitoring and Assessment

, Volume 185, Issue 5, pp 4373–4382 | Cite as

Evaluating the ecological integrity of Atlantic forest remnants by using rapid ecological assessment

  • Hugo Reis Medeiros
  • José Marcelo Torezan


The need for quick identification of priority areas for biodiversity protection makes rapid assessment methods important management tools for defining conservation strategies. An increasingly used rapid assessment method is rapid ecological assessment (REA), a fast and flexible survey directed toward selected indicator species and vegetation forms. The purpose of this study was to propose and test REA based on plant community features of the semideciduous Atlantic forest (SAF). Correlation tests were performed between data collected by REA and plant species diversity, richness, and abundance collected by conventional woody plant inventory methods. The study was conducted in 21 SAF patches in Northern Paraná State, Brazil. The phytosociological inventory was conducted along a single transect and required 2 days to complete (excluding time spent for herbarium identification), whereas REA was conducted along three to four transects per working day. REA results correlated positively with woody plant diversity, proving REA to be an efficient method for defining the conservation status of SAF fragments, but accuracy of evaluations of threats to biological integrity are relatively low. Both the selection of appropriate variables and the skill level of field staff are critical and can strongly influence REA results.


Rapid assessment method Semideciduous Atlantic forest Forest fragmentation Biological integrity 



The authors thank E. M. Francisco, O. C. Pavão, A. L. Cavalheiro, and other colleagues in Londrina University for help in field work. Dr. Efraim Rodrigues, Dr. Luiz dos Anjos, and an anonymous referee contributed with valuable suggestions in a previous version of the article. CNPq (Brazilian government research council) provided a research grant to JMDT (313854/2009-2), a technical staff grant to O. C. Pavão (503836/2010-9), and other research funds.


  1. Abate, T. (1992). Environmental rapid-assessment programs have appeal and critics. Bioscience, 42(7), 486–489.CrossRefGoogle Scholar
  2. Allen, C. D. (2009). Monitoring environmental impact in the upper Sonoran lifestyle: a new tool for rapid ecological assessment. Environmental Management, 43, 346–356. doi: 10.1007/s00267-008-9212-5.CrossRefGoogle Scholar
  3. Anjos, L. (2004). Species richness and relative abundance of birds in natural and anthropogenic fragments of Brazilian Atlantic forest. Annals of the Brazilian Academy of Sciences, 76, 429–434. doi: 10.1590/S0001-37652004000200036.CrossRefGoogle Scholar
  4. Batalha, M. A. (1997). Análise da vegetação da AIRE Cerrado Pé-de-Gigante (Santa Rita do Passa Quatro, SP). Dissertation, Universidade de São Paulo.Google Scholar
  5. Bianchini, E., Popolo, R. S., Dias, M. C., & Pimenta, J. A. (2003). Diversidade e estrutura de espécies arbóreas em área alagável do município de Londrina, sul do Brasil. Acta Botanica Brasilica, 17(3), 405–419. doi: 10.1590/S0102-33062003000300008.CrossRefGoogle Scholar
  6. Blumenthal, D. (2006). Interrelated causes of plant invasion. Science, 310, 243–244. doi: 10.1126/science.1114851.CrossRefGoogle Scholar
  7. Carvalho, P. E. R. (1994). Espécies florestais brasileiras: recomendações silviculturais, potencialidades e uso da madeira. Colombo: Embrapa–CNPF/SPI.Google Scholar
  8. Carvalho, P. E. R. (2003). Espécies arbóreas brasileiras. Brasília: Editora Embrapa Informação Tecnológica.Google Scholar
  9. Chornesky, E. A., Bartuska, A. M., Aplet, G. H., et al. (2005). Science priorities for reducing the threat of invasive species to sustainable forestry. BioScience, 55(4), 335–348. doi: 10.1641/0006-3568(2005)055[0335:SPFRTT]2.0.CO;2.CrossRefGoogle Scholar
  10. Compton, S. G., Wiebes, J. T., & Berg, C. C. (1996). The biology of fig trees and their associated animals. Journal of Biogeography, 23, 405–407. doi: 10.1111/j.1365-2699.1996.tb00001.x.CrossRefGoogle Scholar
  11. Cronk, Q. B., & Fuller, J. L. (1995). Plant invaders. London: Chapman and Hall.Google Scholar
  12. Faccelli, J. M., & Pickett, S. T. A. (1991). Plant litter: its dynamics and effects on plant community structure. The Botanical Review, 57, 1–32. doi: 10.1007/BF02858763.CrossRefGoogle Scholar
  13. FAO (Food and Agriculture Organization). (1994). Soil map of the world revised legend with corrections. Rome: FAO–UNESCO.Google Scholar
  14. Favreto, R., Mello, R.S.P., & Baptista, L.R.M. (2010). Growth of Euterpe edulis Mart. (Arecaceae) under forest and agroforestry in southern Brazil. Agroforestry Systems 80, 303–313. doi: 10.1007/s10457-010-9321-z Google Scholar
  15. Fennessy, M. S., Jacobs, A. D., & Kentula, M. E. (2007). An evaluation of rapid methods for assessing the ecological condition of wetlands. Wetlands, 27(3), 543–560.CrossRefGoogle Scholar
  16. Galetti, M., & Fernandez, J. C. (1998). Palm heart harvesting in the Brazilian Atlantic forest: changes in industry structure and the illegal trade. Journal of Applied Ecology, 35, 294–301. doi: 10.1046/j.1365-2664.1998.00295.x.CrossRefGoogle Scholar
  17. Gascon, C., Williamson, G. B., & Fonseca, G. A. B. (2000). Receding forest edges and vanishing reserves. Science, 288(5470), 1356–1358. doi: 10.1126/science.288.5470.1356.CrossRefGoogle Scholar
  18. Gentry, A. H. (1988). Changes in plant community diversity and floristic composition on environmental and geographical gradients. Annals of the Missouri Botanical Garden, 75, 1–34.CrossRefGoogle Scholar
  19. Grombone-Guaratini, M. T., & Rodrigues, R. R. (2002). Seed bank and seed rain in a seasonal semi-deciduous forest in south-eastern Brazil. Journal of Tropical Ecology, 18(1), 759–774. doi: 10.1017/S0266467402002493.Google Scholar
  20. Herlihy, A. T., Sifneos, J., Bason, C., et al. (2009). An approach for evaluating the repeatability of rapid wetland assessment methods: the effects of training and experience. Environmental Management, 44, 369–377. doi: 10.1007/s00267-009-9316-6.CrossRefGoogle Scholar
  21. Jones, D. T., & Eggleton, P. (2000). Sampling termite assemblages in tropical forests: testing a rapid biodiversity assessment protocol. Advances in Applied Ecological Techniques, 37, 191–203.CrossRefGoogle Scholar
  22. Kapos, V., Wanderlli, E., Camargo, J. L., & Ganade, G. (1997). Edge-related changes in environment and plant responses due to forest fragmentation in central Amazonia. In W. F. Laurance & R. O. Bierregaard (Eds.), Tropical forest remnants: ecology, management, and conservation of fragmented communities (pp. 33–44). Chicago: University of Chicago Press.Google Scholar
  23. Laurance, W. F., Delamonica, P., Laurance, S. G., Vasconcelos, H. L., & Lovejoy, T. E. (2000). Rainforest fragmentation kills big trees. Nature, 404, 836–836. doi: 10.1038/35009032.CrossRefGoogle Scholar
  24. Laurance, W. F., Salicrup, D. P., Delamonica, P., et al. (2001). Rain forest fragmentation and structure on Amazonian liana communities. Ecology, 82, 105–116. doi: 10.1890/0012-9658(2001)082[0105:RFFATS]2.0.CO;2].CrossRefGoogle Scholar
  25. Laurance, W. F., Nascimento, H. E. M., Laurance, S. G., et al. (2006). Rapid decay of tree-community composition in Amazonian forest fragments. Proceedings of the National Academy of Sciences of the United States of America, 103, 19010–19014. doi: 10.1073/pnas.0609048103.CrossRefGoogle Scholar
  26. Magurran, A. E. (1988). Ecological diversity and its measurement. Princeton: Princeton University Press.CrossRefGoogle Scholar
  27. Magurran, A. E. (2004). Measuring biological diversity. Oxford: Wiley-Blackwell.Google Scholar
  28. Maragos, J. E., & Cook, C. W., Jr. (1995). The 1991–1992 rapid ecological assessment of Palau's coral reefs. Coral Reefs, 14, 237–252.Google Scholar
  29. Matos, D. M. S., Santos, C. J. F., & Chevalier, D. R. (2002). Fire and restoration of the largest urban forest of the world in Rio de Janeiro City, Brazil. Urban Ecosystems, 6, 151–161. doi: 10.1023/A:1026164427792.CrossRefGoogle Scholar
  30. Michalski, F., Nishi, I., & Peres, C. A. (2007). Disturbance mediated drift in tree functional groups in Amazonian forest fragments. Biotropica, 39, 691–701. doi: 10.1111/j.1744-7429.2007.00318.x.CrossRefGoogle Scholar
  31. MMA (Ministério do Meio Ambiente). (2002). Avaliação e identificação de áreas e ações prioritárias para a conservação, utilização sustentável e repartição dos benefícios da biodiversidade nos biomas brasileiros. Brasília: MMA/SBF.Google Scholar
  32. Oberbauer, S. F., von Kleist, K. I. I. I., Whelan, K. R. T., & Koptur, S. (1996). Effects of Hurricane Andrew on epiphyte communities within cypress domes of Everglades National Park. Ecology, 77(3), 964–967. doi: 10.2307/2265516.CrossRefGoogle Scholar
  33. Panadda, L., Stein, R. M., & Ørjan, T. (2011). Bamboo dominance reduces tree regeneration in a disturbed tropical forest. Oecologia, 165(1), 161–168. doi: 10.1007/s00442-010-1707-0.CrossRefGoogle Scholar
  34. Pierce, S., Ceriani, R. M., Villa, M., & Cerabolini, B. (2006). Quantifying relative extinction risks and targeting intervention for the orchid flora of a natural park in the European Prealps. Conservation Biology, 20(6), 1804–1810. doi: 10.1111/j.1523-1739.2006.00539.x.CrossRefGoogle Scholar
  35. Pizo, M. A., & Simão, I. (2001). Seed deposition patterns and the survival of seeds and seedlings of the palm Euterpe edulis. Acta Oecologica, 22, 229–233. doi: 10.1016/S1146-609X(01)01108-0.CrossRefGoogle Scholar
  36. Radford, I. J., Grice, A. C., Abbott, B. N., Nicholas, D. M., & Whiteman, L. (2008). Impacts of changed fire regimes on tropical riparian vegetation invaded by an exotic vine. Austral Ecology, 33, 151–167. doi: 10.1111/j.1442-993.2007.01803.x.CrossRefGoogle Scholar
  37. Ramos, V., Durigan, G., Franco, G. A. D. C., Siqueira, M. F., & Rodrigues, R. R. (2007). Árvores da Floresta Estacional Semidecidual: Guia de Identificação de Espécies. São Paulo: EDUSP.Google Scholar
  38. Sayer, E. J. (2006). Using experimental manipulation to assess the roles of leaf litter in the functioning of forest ecosystems. Biological Reviews, 81, 1–31. doi: 10.1017/S1464793105006846.CrossRefGoogle Scholar
  39. Sayre, R., Roca, E., Sedaghatkish, G., Young, B., Keel, S., Roca, R., et al. (2000). Nature in focus: rapid ecological assessment (p. 182). Washington: Island.Google Scholar
  40. Schnitzer, S. A., Dallingand, J. W., & Carson, W. P. (2000). The impact of lianas on tree regeneration in tropical forest canopy gaps: evidence for an alternative pathway of gap-phase regeneration. Journal of Ecology, 88, 655–666. doi: 10.1046/j.1365-2745.2000.00489.x.CrossRefGoogle Scholar
  41. Selaya, N. G., Anten, N. P. R., Oomen, R. J., Matthies, M., & Werger, M. J. A. (2007). Above-ground biomass investments and light interception of tropical forest trees and lianas early in succession. Annals of Botany, 99, 141–151. doi: 10.1093/aob/mcl235.CrossRefGoogle Scholar
  42. Shanahan, M., So, S., Compton, S. G., & Corlett, R. (2001). Fig-eating by vertebrate frugivores: a global review. Biological Reviews, 76(4), 529–572. doi: 10.1017/S1464793101005760.CrossRefGoogle Scholar
  43. Silveira, S. (2006). A vegetação do Parque Estadual Mata dos Godoy. In: J. M. D. Torezan (Ed.), Ecologia do Parque Estadual Mata dos Godoy (pp. 19–27). Londrina: Itedes.Google Scholar
  44. Songwe, N. C., Fasehun, F. E., & Okali, D. U. U. (1988). Litterfall and productivity in a tropical rain forest, Southern Bankundu Forest, Cameroon. Journal of Tropical Ecology, 4, 25–37. doi: 10.1017/S0266467400002467.CrossRefGoogle Scholar
  45. Sosa, V., & Platas, T. (1998). Extinction and persistence of rare orchids in Veracruz, Mexico. Conservation Biology, 12(2), 451–455. doi: 10.1111/j.1523-1739.1998.96306.x.CrossRefGoogle Scholar
  46. Stapanian, M. A., Waite, T. A., Krzys, G., Mack, J. J., & Micacchion, M. (2004). Rapid assessment indicator of wetland integrity as an unintended predictor of avian diversity. Hydrobiologia, 520, 119–126. doi: 10.1023/B:HYDR.0000027731.16535.53.CrossRefGoogle Scholar
  47. Stein, E. D., Fetscher, A. E., Clark, R. P., et al. (2009). Validation of a wetland rapid assessment method: use of EPA’s level 1-2-3 framework for method testing and refinement. Wetlands, 29(2), 648–665. doi: 10.1672/07-239.1.CrossRefGoogle Scholar
  48. Sutula, M. A., Stein, E. D., Collins, J. N., Fetscher, A. E., & Clark, R. (2006). A practical guide for the development of a wetland assessment method: the California experience. Journal of the American Water Resources Association, 42, 157–175. doi: 10.1111/j.1752-1688.2006.tb03831.x.CrossRefGoogle Scholar
  49. Torezan, J. M. D. (2002). Nota sobre a vegetação da bacia do Rio Tibagi. In M. E. Medri, E. Bianchini, A. O. Shibatta, & J. A. Pimenta (Eds.), A bacia do Rio Tibagi (pp. 103–107). Londrina: Universidade Estadual de Londrina.Google Scholar
  50. Torezan, J.M.D. (2003). Fragmentação Florestal e Prioridades para a Conservação da Biodiversidade. PhD thesis, Universidade de São Paulo.Google Scholar
  51. Turner, I. M., & Corlett, R. T. (1996). The conservation value of small, isolated fragments of lowland tropical rainforest. Trends in Ecology & Evolution, 11(8), 330–333. doi: 10.1016/0169-5347(96)10046-x.CrossRefGoogle Scholar
  52. Vasconcelos, H. L., & Luizão, F. J. (2004). Litter production and litter nutrient concentrations in a fragmented Amazonian landscape. Ecological Applications, 14, 884–892. doi: 10.1890/03-5093.CrossRefGoogle Scholar
  53. Viana, V. M., & Tabanez, A. A. J. (1996). Biology and conservation of forest fragments in the Brazilian Atlantic moist forest. In J. Schellas & R. Greenberg (Eds.), Forest patches in tropical landscapes (pp. 151–167). Washington: Island.Google Scholar
  54. Viana, V. M., Tabanez, A. A. J., & Batista, J. L. F. (1997). Dynamics and restoration of forest fragments in the Brazilian Atlantic moist forest. In W. F. Laurance & R. O. Bierregaard (Eds.), Tropical forest remnants: ecology, management, and conservation of fragmented communities (pp. 351–365). Chicago: University of Chicago Press.Google Scholar
  55. Vidal, M. M., Pivello, V. R., Meirelles, S. T., & Metzger, J. P. (2007). Produção de serapilheira em floresta Atlântica secundária numa paisagem fragmentada (Ibiúna, SP): importância da borda e tamanho dos fragmentos. Revista Brasileira de Botânica, 30(3), 521–532. doi: 10.1590/S0100-84042007000300016.CrossRefGoogle Scholar
  56. Zhou, B., Fu, M., Xie, J., Yang, X., & Li, Z. (2005). Ecological functions of bamboo forest: research and application. Journal of Forestry Research, 16, 143–147. doi: 10.1007/BF02857909.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Laboratório de Biodiversidade e Restauração de EcossistemasUniversidade Estadual de LondrinaLondrinaBrazil

Personalised recommendations