Advertisement

Environmental Monitoring and Assessment

, Volume 185, Issue 5, pp 4221–4229 | Cite as

Effect of citric acid on metals mobility in pruning wastes and biosolids compost and metals uptake in Atriplex halimus and Rosmarinus officinalis

  • Y. Tapia
  • E. Eymar
  • A. Gárate
  • A. Masaguer
Article

Abstract

To assess metal mobility in pruning waste and biosolids compost (pH 6.9 and total concentration of metals in milligram per kilogram of Cd 1.9, Cu 132, Fe 8,513, Mn 192, Pb 81, and Zn 313), shrubs species Atriplex halimus and Rosmarinus officinalis were transplanted in this substrate and irrigated with citric acid (4 g L−1, pH 2.9) and nutrient solution daily for 60 days. Citric acid significantly increased the concentrations of soluble Mn and Fe in the nutrient substrate solution measured by suction probes, while other metals did not vary in concentration (Cu and Zn) or were not observed at detectable levels (Cd and Pb). In plants, citric acid significantly increased the concentrations of Cu (2.7 ± 0.1–3.3 ± 0.1 mg kg−1), Fe (49.2 ± 5.2–76.8 ± 6.8 mg kg−1), and Mn (7.2 ± 1.1–11.4 ± 0.7 mg kg−1) in leaves of R. officinalis, whereas the concentration of only Mn (25.4 ± 0.3–42.2 ± 2.9 mg kg−1) was increased in A. halimus. Increasing Fe and Mn solubility by citric acid addition indicates the possibility of using it to improve plant nutrition. The mobility of metals in this substrate was influenced for the concentration of the metal, the degree of humification of organic matter and its high Fe content.

Keywords

Metal bioavailability Sequential extraction Suction probes Sewage sludge 

Notes

Acknowledgments

This work was supported by the Ministry of Education and Science of Spain (project 2005-06258-C02-02/TECNO CTM) and the Spanish International Cooperation Agency (AECI, scholarship MAE 2005–2007).

References

  1. Adriano, D. C., Wenzel, W. W., Vangrosveld, J., Bolan N. S. (2004). Role of assisted natural remediation in environmental cleanup. Geoderma, 122, 121–142.Google Scholar
  2. Alloway, B. J. (Ed). (1995). Heavy metals in soils. London: Blackie Academic and Professional.Google Scholar
  3. Barceló, J., Nicolás, R., Sabater B., & Sánchez, R. (1987). Fisiología vegetal. Ediciones Pirámide, Madrid.Google Scholar
  4. Barton, L., & Abadía, J. (2006). Iron nutrition in plants and rhizospheric microorganisms. Netherlands: Springer.CrossRefGoogle Scholar
  5. Cizzola, R., Michitsch, H., & Franz, C. (2002). Monitoring of metallic micronutrients and heavy metals in herbs, spices and medicinal plants from Austria. European Food Research and Technology, 216, 407–411.Google Scholar
  6. Conesa, H., García, G., Faz, A., & Arnaldos, R. (2007). Dynamics of metal tolerant plant communities’ development in mine tailings from the Cartagena-La Unión Mining District (SE Spain) and their interest for further revegetation purposes. Chemosphere, 68, 1180–1185.Google Scholar
  7. Clemente, R., Escolar, A., & Bernal, P. (2006). Metals fractionation and organic matter mineralisation in contaminated calcareous soil amended with organic materials. Bioresource Technology, 97, 1894–1901.CrossRefGoogle Scholar
  8. Deportes, J., Benoyt-Guyod, J., & Zmirou, D. (1995). Hazard to man and the environment posed by the use of urban waste compost: a review. Science of the Total Environment, 172, 197–222.Google Scholar
  9. Do Nascimento, W., Amarasiriwardena, D., & Xing, B. (2006). Comparison of natural organic acids and synthetic chelates at enhancing phytoextraction of metals from multi-metal contaminated soil. Environmental Pollution, 140, 114–123.Google Scholar
  10. Evangelou, M., Ebel, M., & Schaeffer, A. (2006). Evaluation of the effect of small organic acids on phytoextraction of Cu and Pb from soil with tobacco Nicotiana tabacum. Chemosphere, 66, 996–1004.CrossRefGoogle Scholar
  11. Harada, Y., & Inoko, A. (1980). The measurement of the cation-exchange capacity of composts for estimation of degree of maturity. Soil Science & Plant Nutrition, 26, 127–134.CrossRefGoogle Scholar
  12. Hettiarachchi, G., Ryan, J., Chaney, R., & La Fleur, C. (2003). Sorption and desorption of cadmium by different fractions of biosolids-amended soils. Journal of Environmental Quality, 32, 1684–1693.CrossRefGoogle Scholar
  13. Huynh, T. T., Laidlaw, W. S., Singh, B., Gregory, D., & Baker, A. J. M. (2008). Effects of phytoextraction on heavy metal concentrations and pH of pore-water of biosolids determined using an in situ sampling technique. Environmental Pollution, 156, 874–882.CrossRefGoogle Scholar
  14. Ingelmo, F., Canet, R., Ibañez, M. A., Pomares, F., & García, J. (1998). Use of MSW compost, dried sewage sludge and other wastes as partial substitutes for peat and soil. Bioresource Technology, 63, 123–129.CrossRefGoogle Scholar
  15. Jean, L., Bordas, F., Gautier-Moussard, C., Vernay, P., Hitmi, A., & Bollinger, J. (2008). Effect of citric acid and EDTA on chromium and nickel uptake and translocation by Datura innoxia. Environmental Pollution, 153, 555–563.CrossRefGoogle Scholar
  16. Kadukova, J., & Kalogerakis, N. (2007). Lead accumulation from non-saline and saline environment by Tamarix smyrnensis Bunge. European Journal of Soil Biology, 43, 216–223.CrossRefGoogle Scholar
  17. Lasat, M. (2000). Phytoextraction of metals from contaminated soil: a review of plant/soil/metal interaction and assessment of pertinent agronomic issues. Journal of Hazardous Substance Research, 2, 5–25.Google Scholar
  18. Lesage, E., & Meers, E. (2005). Enhanced phytoextraction II: effect of EDTA and citric acid on heavy metal uptake by Helianthus annuus from a calcareous soil. International Journal of Phytoremediation, 7, 143–152.CrossRefGoogle Scholar
  19. López, G. (2002). Guía de los árboles y arbustos de la Península Ibérica y Baleares. Ed. Mundi-Prensa, Madrid.Google Scholar
  20. Lutts, S., Lefère, I., Delpèree, C., Kivits, S., Dechamps, C., Robledo, A., et al. (2004). Heavy metal accumulation by halophyte species Mediterranean saltbush. Journal of Environmental Quality, 33, 1271–1279.CrossRefGoogle Scholar
  21. Merrington, G., Oliver, I., Smernik, R. J., & McLaughlin, M. J. (2003). The influence of sewage sludge properties on sludge-borne metal availability. Advances in Environmental Research, 8, 21–36.CrossRefGoogle Scholar
  22. Merrington, G., & Smernik, R. J. (2004). Cadmium sorption in biosolids amended soils: results from a field trial. Science of the Total Environment, 327, 239–247.Google Scholar
  23. Mills, H. A., & Jones, J. B. (1991). Plant analysis handbook II. Athens: MicroMacro.Google Scholar
  24. Najeeb, U., Xu, L., Ali, S., Jilani, G., Gong, H. J., Shen, W. Q., et al. (2009). Citric acid enhances the phytoextraction of manganese and plant growth by alleviating the ultrastructural damages in Juncus effusus L. Journal of Hazardous Materials, 170, 1156–1163.CrossRefGoogle Scholar
  25. Özcan, M. (2004). Mineral contents of some plants used as condiments in Turkey. Food Chemistry, 84, 437–440.CrossRefGoogle Scholar
  26. Quartacci, M., Argilla, A., Baker, A., & Navari-Izzo, F. (2006). Phytoextraction of metals from a multiply contaminated soil by Indian mustard. Chemosphere, 63, 918–925.Google Scholar
  27. Roletto, E., Barberis, R., Consiglio, M., & Jodice, R. (1985). Chemical parameters for evaluating compost maturity. Biocycle, 26, 46–47.Google Scholar
  28. Romkens, P., Bouwman, L., Japenga, J., & Draaisma, C. (2002). Potentials and drawbacks of chelate-enhanced phytoremediation of soils. Environmental Pollution, 116, 109–121.CrossRefGoogle Scholar
  29. Sameni, A., & Soleimani, R. (2007). Crude protein, phosphorus, common salt and mineral composition of range plants and their composition of range plants ans their nutritive value for grazing ruminants in southern Iran. Communications in Soil Science and Plant, 38, 1–13.CrossRefGoogle Scholar
  30. Schwab, A. P., Zhu, D. S., Banks, M. K. (2008). Influence of organic acids on the transport of heavy metals in soil. Chemosphere, 72, 986–994.Google Scholar
  31. Smith, S. (2009). Critical review of the bioavailability and impacts of metals in municipal solid waste composts compared to sewage sludge. Environment International, 35, 142–156.CrossRefGoogle Scholar
  32. Sposito, G., (1989). The Chemistry of soils. New York: Oxford University Press.Google Scholar
  33. Stevenson, F. J. (1994). Humus chemistry. New York: Wiley.Google Scholar
  34. Tapia, Y., Cala, V., Eymar, E., Frutos, I., Gárate, A., & Masaguer, A. (2010). Chemical characterization and evaluation of composts as organic amendments for immobilizing cadmium. Bioresource Technology, 101, 5437–5443.CrossRefGoogle Scholar
  35. Tapia, Y., Cala, V., Eymar, E., Frutos, I., Gárate, A., & Masaguer, A. (2011). Phytoextraction of cadmium by four mediterranean shrubs species. International Journal of Phytoremediation, 13, 567–579.CrossRefGoogle Scholar
  36. Tessier, A., Campbell, P. G. C., & Bisson, M. (1979). Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry, 51, 844–851.CrossRefGoogle Scholar
  37. Turgut, C., Pepe, M., Cutright, J. (2004). The effect of EDTA and citric acid on phytoremediation of Cd, Cr and Ni from soil using Helianthus annuus. Environmental Pollution, 131, 147–154.Google Scholar
  38. Van Niekerk, W. A., Sparks, C. F., Rethman, N. F. G., & Coertze, R. J. (2004). Mineral composition of certain Atriplex species and Cassia sturtii. South African Journal of Animal Science, 34, 105–107.Google Scholar
  39. Walkley, A. L., & Black, A. (1947). A rapid determination of soil organic matter. Journal of Agricultural Science, 25, 563–568.Google Scholar
  40. Walter, I., Martínez, F., & Cala, V. (2006). Heavy metal speciation and phytotoxic effects of three representative sewage sludges for agricultural uses. Environmental Pollution, 139, 507–514.CrossRefGoogle Scholar
  41. Wasay, S., Barrington, S., & Tokunaga, S. (2001). Organic acids for in situ remediation of soils polluted by heavy metals: soil flushing in columns. Water, Air, and Soil Pollution, 127, 301–314.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Departamento de Química AgrícolaUniversidad Autónoma de MadridMadridSpain
  2. 2.Departamento de Edafología, ETSIAUniversidad Politécnica de MadridMadridSpain

Personalised recommendations