Environmental Monitoring and Assessment

, Volume 185, Issue 3, pp 2705–2722 | Cite as

Combining a road pollution dispersion model with GIS to determine carbon monoxide concentration in Tennessee

  • Eva Pantaleoni


The purpose of this paper is to develop an air pollution model that is independent from pollution monitoring sites and highly accurate through space and time. Total carbon monoxide concentration is computed with the use of traffic flow data, vehicle speed and dimensions, emission rates, wind speed, and temperature. The data are interpolated using a geographic information system universal kriging technique, and the end results produce state level air pollution maps with high local accuracy. The model is validated against Environment Protection Agency (EPA) pollution data. Overall, the model has 71 % agreement with EPA, overestimating values of carbon monoxide for less than 1 ppm. The model has three advantages over already assessed air pollution models. First, it is completely independent of any air pollution monitoring stations; thus, possible temporary or permanent unreliability or lack of the data is avoided. Second, being based on a 5,710 traffic count network, the problem of remote places coverage is avoided. Third, it is based on a straightforward equation, where minimal preprocessing of traffic and climatic data is required.


Traffic Modeling GIS Carbon monoxide EPA 


  1. Austin, J. (2003). Day-of-week patterns in toxic air contaminants in southern California. Journal of the Air & Waste Management Association, 53(7), 889–896.CrossRefGoogle Scholar
  2. Bae, M. S., Schauer, J. J., DeMinter, J. T., & Turner, J. R. (2004). Hourly and daily patterns of particle-phase organic and elemental carbon concentrations in the urban atmosphere. Journal of the Air & Waste Management Association, 54(7), 823–833.CrossRefGoogle Scholar
  3. Baker, C. J. (1996). Outline of a novel method for the prediction of atmospheric pollution dispersal from road vehicles. Journal of Wind Engineering and Industrial Aerodynamics, 65, 395–404.CrossRefGoogle Scholar
  4. Beelen, R., Hoek, G., Pebesma, E., Vienneau, D., de Hoogh, K., & Briggs, D. J. (2009). Mapping of background air pollution at a fine spatial scale across the European Union. Science of the Total Environment, 407, 1852–1867.CrossRefGoogle Scholar
  5. Brauer, M., Hoek, G., van Vliet, P., Meliefste, K., Fischer, P., Gehring, U., et al. (2003). Estimating long-term average particulate air pollution concentrations: application of traffic indicators and geographic information systems. Epidemiology, 14, 228–239.Google Scholar
  6. Briggs, D. J. (2000). Exposure assessment. In P. Elliott, J. Wakefield, N. Best, & D. Briggs (Eds.), Spatial epidemiology: methods and applications (pp. 335–359). Oxford: Oxford University Press.Google Scholar
  7. Briggs, D. J., Collins, S., Elliott, P., Fischer, P., Kingham, S., Lebret, E., et al. (1997). Mapping urban air pollution using GIS: a regression-based approach. International Journal of Geographical Information Science, 11, 699–718.CrossRefGoogle Scholar
  8. Brunekreef, B., Janssen, N. A., de Hartog, J., Harssema, H., Knape, M., & van Vliet, P. (1997). Air pollution from truck traffic and lung function in children living near motorways. Epidemiology, 8, 298–303.CrossRefGoogle Scholar
  9. Bureau of Transit Statistics (2006). Table 1-11: Number of U.S. Aircraft, Vehicles, Vessels, and Other Conveyances. Accessed June 2012.
  10. Burnett, R. T., Brook, J. E., Philps, O., Cakmak, S., Raizenne, M. E., Stieb, D., et al. (1998). The association between ambient concentrations of carbon monoxide and daily mortality in Toronto, Canada. Journal of the Waste and Management Association, 48, 689–700.CrossRefGoogle Scholar
  11. Burnett, R. T., Brook, J., Dann, T., Delocla, C., Philips, O., Cakmak, S., et al. (2000). Association between particulate and gas-phase components of urban air pollution and daily mortality in eight Canadian cities. Inhalation Toxicology, 12, 15–29.CrossRefGoogle Scholar
  12. Calesso Teixeira, E., Ramos de Santana, E., Wiegand, F., & Fachel, J. (2009). Measurement of surface ozone and its precursors in an urban area in South Brazil. Atmospheric Environment, 43, 2213–2220.CrossRefGoogle Scholar
  13. Campbell, J. B. (2002). Introduction to remote sensing (3rd ed.). New York: Guilford.Google Scholar
  14. Chen, L.W.A., Doddridge, B.G., Dickerson, R.R. (2002). Observation of carbonaceous aerosols and carbon monoxide at suburban site: implication for an emission inventory. Accessed Aug 2011.
  15. Cohen, A. J., Anderson, H. R., Ostro, B., Pandey, K. D., Krzyzanowski, M., Künzli, N., et al. (2004). Urban air pollution. In A. D. M. Ezzati, A. D. A. Lopez, A. Rodgers, & C. J. L. Murray (Eds.), Comparative quantification of health risks: global and regional burden of disease due to selected major risk factors (pp. 1353–1434). Geneva: World Health Organization.Google Scholar
  16. Comrie, A. C., & Diem, J. E. (1999). Climatology and forecast modeling of ambient carbon monoxide in Phoenix, Arizona. Atmospheric Environment, 33, 5023–5036.CrossRefGoogle Scholar
  17. Delaney, H. D., & Vargha, A. (2002). Comparing several robust tests of stochastic equality with ordinally scaled variables and small to moderate sized samples. Psychological Methods, 7, 485–503.CrossRefGoogle Scholar
  18. Denby, B., Horálek, J., Walker, S., Eben, K., Fiala, J. (2005). Interpolation and assimilation methods for European scale air quality assessment and mapping. Part I. Review and recommendations. Tech. Rep. 20 05/7. Bilthoven: The European Topic Centre on Air and Climate Change.Google Scholar
  19. English, P., Neutra, R., Scalf, R., Sullivan, M., Waller, L., & Zhu, L. (1999). Examining associations between childhood asthma and traffic flow using a geographic information system. Environmental Health Perspect, 107, 761–767.CrossRefGoogle Scholar
  20. Environmental Protection Agency. (2000). Emission facts: average annual emissions and fuel consumption for passenger cars and light trucks [online]. Accessed February 2011.
  21. Environmental Protection Agency. (2009). Site description report. AMP 500 Site Monitor.Google Scholar
  22. Eskridge, R. E., Petersen, W. B., & Rao, S. T. (1991). Turbulent diffusion behind vehicles; effect of traffic speed on pollutant concentrations. Journal of the Waste and Management Association, 41, 312–317.CrossRefGoogle Scholar
  23. Evans, G. W., & Jacobs, S. V. (1981). Air pollution and human behavior. Journal of Social Issues, 37, 95–125.CrossRefGoogle Scholar
  24. Finkelstein, M., Jerrett, M., DeLuca, P., Finkelstein, N., Verma, D., Chapman, K., et al. (2003). Relation between income, air pollution and mortality: a cohort study. Canadian Medical Association, 169, 397–402.Google Scholar
  25. Gauderman, W. J., Gilliland, G. F., Vora, H., Avol, E., Stram, D., McConnell, R., et al. (2000). Association between air pollution and lung function growth in Southern California children. American Journal of Respiratory and Critical Care Medicine, 166, 76–84.CrossRefGoogle Scholar
  26. Glen, W. G., Zelenka, M. P., & Graham, R. C. (1996). Relating meteorological variables and trends in motor vehicle emissions to monthly urban carbon monoxide concentrations. Atmospheric Environment, 30, 4225–4232.CrossRefGoogle Scholar
  27. Gorhama, K. A., Blake, N. J., VanCuren, R. A., Fuelberg, H. E., Meinardi, S., & Blake, D. R. (2010). Seasonal and diurnal measurements of carbon monoxide and nonmethane hydrocarbons at Mt. Wilson, California: indirect evidence of atomic Cl in the Los Angeles basin. Atmospheric Environment, 44, 2271–2279.CrossRefGoogle Scholar
  28. Grant, A., Stanley, K. F., Henshaw, S. J., Shallcross, D. E., & O’Doherty, S. (2010). High-frequency urban measurements of molecular hydrogen and carbon monoxide in the United Kingdom. Atmospheric Chemistry and Physics, 10, 4714–4724.Google Scholar
  29. Greene, W. H. (2003). Econometric analysis (5th ed.). Upper Saddle River: Pearson Education.Google Scholar
  30. Havlicek, L. L., & Peterson, N. L. (1977). Effects of the violation of assumptions upon significance levels of the Pearson’s r. Psychological Bulletin, 84, 373–377.CrossRefGoogle Scholar
  31. Hoek, G., Brunekreef, B., Goldbohm, S., Fischer, P., & Van Den Brandt, P. (2002). Association between mortality and indicators of traffic-related air pollution in the Netherlands: a cohort study. The Lancet, 360, 1203–1209.CrossRefGoogle Scholar
  32. Hoek, G., Beelen, R., de Hoogh, K., Vienneau, D., Gulliver, J., Fischer, P., et al. (2008). A review of land-use regression models to assess spatial variation of outdoor air pollution. Atmospheric Environment, 42, 7561–7578.CrossRefGoogle Scholar
  33. Janssen, N. A. H., Van Vliet, P. H. N., Aarts, F., Harssema, H., & Brunekreef, B. (2001). Assessment of exposure to traffic related air pollution of children attending schools near motorways. Atmospheric Environment, 35, 3875–3884.CrossRefGoogle Scholar
  34. Janssen, S., Dumont, G., Fierens, F., & Mensink, C. (2008). Spatial interpolation of air pollution measurements using CORINE land cover data. Atmospheric Environment, 42, 4884–4903.CrossRefGoogle Scholar
  35. Jerrett, M., Arain, A., Kanaroglou, P., Beckerman, B., Potoglou, D., & Sahsuvaroglu, T. (2005). A review and evaluation of intraurban air pollution exposure models. Journal of Exposure Science and Environmental Epidemiology, 15, 185–204.CrossRefGoogle Scholar
  36. Kim, J. J., Smorodinsky, S., Lipsett, M., Singer, B. C., Hodgson, A. T., & Ostro, B. (2004). Traffic-related air pollution near busy roads: the East Bay children’s respiratory health study. American Journal of Respiratory and Critical Care Medicine, 170, 520–526.CrossRefGoogle Scholar
  37. Lam, K. S., Wang, T. J., Chan, L. Y., Wang, T., & Harris, J. (2001). Flow patterns influencing the seasonal behavior of surface ozone and carbon monoxide at a coastal site near Hong Kong. Atmospheric Environment, 35, 3121–3135.CrossRefGoogle Scholar
  38. Lin, Y. C., Lin, C. Y., Lin, P. H., Engling, G., Lan, Y. Y., Kuo, T. H., et al. (2011). Observations of ozone and carbon monoxide at Mei-Feng mountain site (2269 m a.s.l.) in Central Taiwan: seasonal variations and influence of Asian continental outflow. Science of Total Environment, 409, 3033–3042.CrossRefGoogle Scholar
  39. Liu, L. J., & Rossini, A. J. (1996). Use of kriging models to predict 12-hour mean ozone concentrations in metropolitan Toronto—a pilot study. Environmental International, 22, 677–692.CrossRefGoogle Scholar
  40. Lough, G. C., Schauer, J. J., & Lawson, D. R. (2006). Day-of-week trends in carbonaceous aerosol composition in the urban atmosphere. Atmospheric Environment, 40, 4137–4149.CrossRefGoogle Scholar
  41. Lovblad, G., Tarrason, L., Torseth, K., Dutchak, S. (2004). EMEP assessment, part I, European perspective. Accessed Aug 2011.
  42. Mayer, H. (1999). Air pollution in cities. Atmospheric Environment, 33, 4029–4037.CrossRefGoogle Scholar
  43. McCarty, M. C., Hafner, H. R., & Montzka, S. A. (2006). Background concentration of 18 air toxics for North America. Air and Waste Management Association, 56, 3–11.Google Scholar
  44. Mulholland, J. A., Butler, A. J., Wilkinson, J. G., Russell, A. G., & Tolbert, P. E. (1998). Temporal and spatial distributions of ozone in Atlanta: regulatory and epidemiologic implications. Journal of Air and Waste Management Association, 48, 418–426.CrossRefGoogle Scholar
  45. Nabi, H., Consoli, S. M., Chastang, J. F., Chiron, M., Lafont, S., & Lagarde, E. (2005). Type A behavior pattern, risky driving behaviors, and serious road traffic accidents: a prospective study of the GAZEL cohort. American Journal of Epidemiology, 161, 864–870.CrossRefGoogle Scholar
  46. O’Neil, M. S., Veves, A., Zanobetti, A., Sarnat, J. A., Gold, D. R., Economides, P. A., et al. (2005). Diabetes enhances vulnerability to particulate air pollution-associated impairment in vascular reactivity and endothelial function. Journal of the American Heart Association. doi: 10.1161/CIRCULATIONAHA.104.517110.
  47. Pikhart, H., Bobak, M., Gorynski, P., Wojtyniak, B., Danova, J., Celko, M. A., et al. (2001). Outdoor sulphur dioxide and respiratory symptoms in Czech and Polish school children: a small-area study (SAVIAH). Small-area variation in air pollution and health. International Archives of Occupational and Environmental Health, 74, 574–578.Google Scholar
  48. Pope, C. A., Burnett, R. T., Thun, M. J., Calle, E. E., Krewski, D., Ito, K., et al. (2002). Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. Journal of the American Medical Association, 287, 1132–1141.CrossRefGoogle Scholar
  49. Raub, J. A., Mathieu-Nolf, M., Hampson, N. B., & Thom, S. R. (2000). Carbone monoxide poisoning—a public health perspective. Toxicology, 145, 1–14.CrossRefGoogle Scholar
  50. Ross, Z., English, P. B., Scalf, R., Gunier, R., Smorodinsky, S., Wall, S., et al. (2006). Nitrogen dioxide prediction in Southern California using land use regression modeling: potential for environmental health analyses. Journal of Exposure Analysis and Environmental Epidemiology, 16, 106–114.CrossRefGoogle Scholar
  51. Ross, Z., Jerrett, M., Ito, K., Tempalski, B., & Thurston, G. D. (2007). A land use regression for predicting fine particulate matter concentrations in the New York City region. Atmospheric Environment, 41, 2255–2269.CrossRefGoogle Scholar
  52. Ruxton, G. D. (2006). The unequal variance t-test is an underused alternative to Student’s t-test and the Mann-Whitney U test. Behavioral Ecology, 17(4), 688–690.CrossRefGoogle Scholar
  53. Ryan, P. H., LeMasters, G. K., Biswas, P., Levin, L., Hu, S., Lindsey, M., et al. (2007). A comparison of proximity and land use regression traffic exposure models and wheezing in infants. Environmental Health Perspect, 115, 278–284.CrossRefGoogle Scholar
  54. Singh, V., Carnevale, C., Finzi, G., Pisoni, E., & Volta, M. (2011). A cokriging based approach to reconstruct air pollution maps, processing measurement station concentrations and deterministic model simulations. Environmental Modelling & Software, 26, 778–786.CrossRefGoogle Scholar
  55. Sisovic, A., & Fugas, M. (1987). Survey of carbon monoxide concentrations in selected urban microenvironments. Environmental Monitoring Assessment, 9, 93–99.CrossRefGoogle Scholar
  56. Suthawaree, J., Katoa, S., Takamib, A., Kadenac, H., Toguchic, M., Yogic, K., et al. (2008). Observation of ozone and carbon monoxide at Cape Hedo, Japan: seasonal variation and influence of long-range transport. Atmospheric Environment, 42, 2971–2981.CrossRefGoogle Scholar
  57. Tennessee Department of Transportation (TNDOT). (2006). Tennessee’s Interstate System-Facts about Tennessee’s Interstate System 50th anniversary, 1956–2006. Accessed Jul 2011.
  58. Vienneau, D., de Hoogh, K., & Briggs, D. (2009). AGIS-based method for modeling air pollution exposure across Europe. Science of Total Environment, 208, 255–266.CrossRefGoogle Scholar
  59. Volpino, P., Tomei, F., La Valle, C., Tornao, E., Rosati, M. V., Ciarrocca, M., et al. (2004). Respiratory and cardiovascular function at rest and during exercise testing in a healthy working population: effects of outdoor traffic air pollution. Occupational Medicine, 54(7), 475–482.CrossRefGoogle Scholar
  60. Westberg, K., Cohen, N., & Wilson, K. W. (1971). Carbon monoxide: its role in photochemical smog formation. Science, 171(3975), 1013–1015.CrossRefGoogle Scholar
  61. Zambon, P., Ricci, P., Bovo, E., Casula, A., Gattolin, M., Fiore, et al. (2007). Sarcoma risk and dioxin emissions from incinerators and industrial plants: a population-based case–control study (Italy). Environmental Health, 16, 6–19.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Vanderbilt Kennedy CenterVanderbilt UniversityNashvilleUSA

Personalised recommendations