Environmental Monitoring and Assessment

, Volume 185, Issue 3, pp 2535–2552 | Cite as

Phosphorous speciation in surface sediments of the Cochin estuary

  • T. R. Gireeshkumar
  • P. M. Deepulal
  • N. Chandramohanakumar


Sequential chemical extraction using chelating agents were used to study the P dynamics and its bioavailability along the surface sediments of the Cochin estuary (southwest coast of India). Sediments were analyzed for major P species (iron bound P, calcium bound P, acid soluble organic P, alkali soluble organic P and residual organic P), Fe, Ca, total carbon, organic carbon, total nitrogen and total sulfur contents. An abrupt increase in the concentration of dissolved inorganic P with increasing salinity was observed in the study region. Iron-bound P exhibited a distinct seasonal pattern with maximum values in the monsoon season when fresh water condition was prevailed in the estuary. As salinity increased, the percentage of iron-bound P decreased, while that of calcium-bound P and total sedimentary sulfur increased. C/P and N/P ratios were low which indicate that large amounts of organic matter enriched with P tend to accumulate in surface sediments. The high organic P contribution in the sedimentary P pool may indicate high organic matter load with incomplete mineralization, as well as comparatively greater percentage of humic substance and resistant organic compounds. Principal component analysis is employed to find the possible processes influencing the speciation of P in the study region and indicate the following processes: (1) the spatial and seasonal variations of calcium bound P and acid soluble organic P was mainly controlled by sediment texture and organic carbon content, (2) sediment redox conditions control the distribution of iron bound P and (3) the terrigenous input of organic P is a significant processes controlling total P content in surface sediments. The bioavailable P was very high in the surface sediments which on an average accounts for 59 % in the pre-monsoon, 65 % in the monsoon and 53 % in the post-monsoon seasons. The surface sediments act as a potential internal source of P in the Cochin estuary.


Estuaries Eutrophication Phosphorous Chemical extraction Geochemistry 



The authors gratefully acknowledge the facilities and the support provided by the Director, School of Marine Sciences and the Dean, Faculty of Marine Sciences, Cochin University of Science and Technology.


  1. Álvarez-Rogel, J., Jiménez-Cárceles, F. J., & Egea-Nicolás, C. (2007). Phosphorus retention in a coastal salt marsh in SE Spain. Science for Total Environment, 378, 71–74.CrossRefGoogle Scholar
  2. Alvera-Azcarate, A., Ferreira, J. G., & Nunes, J. P. (2003). Modelling eutrophication in mesotidal and macrotidal estuaries. The role of intertidal seaweeds. Estuarine Coastal and Shelf Science, 56(4), 1–10.Google Scholar
  3. Andrieux-Loyer, F., & Aminot, A. (1997). A two-year survey of phosphorus speciation in the sediments of the Bay of Seine (France). Continental Shelf Research, 17, 1229–1245.CrossRefGoogle Scholar
  4. Andrieux-Loyer, F., & Aminot, A. (2001). Phosphorus forms related to sediment grain size and geochemical characteristics in French coastal areas. Estuarine Coastal and Shelf Science, 52, 617–629.CrossRefGoogle Scholar
  5. Anshumali, & Ramanathan, A. L. (2007). Phosphorus fractionation in surficial sediments of Pandoh Lake, Lesser Himalaya, Himachal Pradesh, India. Applied Geochemistry, 22, 1860–1871.CrossRefGoogle Scholar
  6. Azzoni, R., Giordani, G., & Viaroli, P. (2005). Iron–sulphur–phosphorus interactions: implications for sediment buffering capacity in a Mediterranean eutrophic lagoon (Sacca di Goro, Italy). Hydrobiologia, 550, 131–148.CrossRefGoogle Scholar
  7. Babu, M. T., Kesavadas, V., & Vethamony, P. (2006). BOD-DO modeling and water quality analysis of a waste water out fall off Kochi, west coast of India. Environmental International, 32, 165–173.CrossRefGoogle Scholar
  8. Balachandran, K. K., Thresiamma, J., Maheswari, N., Sankaranarayanan, N., Kesavadas, V., & Sheeba, P. (2003). Geochemistry of surficial sediments along the central southwest coast of India. Journal of Coastal Research, 19, 664–683.Google Scholar
  9. Balachandran, K. K., Laluraj, C. M., Nair, M., Joseph, T., Sheeba, P., & Venugopal, P. (2005). Heavy metal accumulation in a flow restricted, tropical estuary. Estuarine, Coastal and Shelf Science, 65, 361–370.CrossRefGoogle Scholar
  10. Balachandran, K. K., Reddy, G. S., Revichandran, C., Srinivas, K., Vijayan, P. R., & Thottam, T. J. (2008). Modelling of tidal hydrodynamics for a tropical ecosystem with implications for pollutant dispersion (Cochin estuary, southwest India). Ocean Dynamics, 58, 259–273.CrossRefGoogle Scholar
  11. Boesch, D. F., Brinsfield, R. B., & Magnien, R. E. (2001). Chesapeake Bay eutrophication: scientific understanding, ecosystem restoration, and challenges for agriculture. Journal of Environmental Quality, 30, 303–320.CrossRefGoogle Scholar
  12. Bowman, R. A., & Cole, C. V. (1978). Transformations of organic phosphorus substrates in soils as evaluated by NaHCO3 extraction. Soil Science, 125, 49–54.CrossRefGoogle Scholar
  13. Boynton, W. R., & Bailey, E. M. (2008). Sediment oxygen and nutrient exchange measurements from Chesapeake Bay, tributary rivers and Maryland coastal bays: development of a comprehensive database and analysis of factors controlling patterns and magnitude of sediment–water exchanges. Technical Report Series Ref. No. [UMCES] CBL 08-019. University of Maryland Center for Environmental Science, Chesapeake Biological Laboratory, Solomons, pp 202.Google Scholar
  14. Boynton, W. R., & Kemp, W. M. (2008). Estuaries. In D. G. Capone, D. A. Bronk, M. R. Mulholland, & E. J. Carpenter (Eds.), Nitrogen in the marine environment (pp. 809–866). Amsterdam: Elsevier.CrossRefGoogle Scholar
  15. Caraco, N. J., Cole, J. J., & Likens, G. E. (1990). A comparison of phosphorus immobilization in sediments of freshwater and coastal marine systems. Biogeochemistry, 9, 277–290.CrossRefGoogle Scholar
  16. Carpenter, S. R., Caraco, N. F., Correll, D. L., Howarth, R. W., Sharpley, A. N., & Smith, V. H. (1998). Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecological Applications, 8, 559–568.CrossRefGoogle Scholar
  17. Cha, H. J., Lee, C. B., Kim, B. S., Choi, M. S., & Ruttenberg, K. C. (2005). Early diagenetic redistribution and burial of phosphorus in the sediments of the southwestern East Sea (Japan Sea). Marine Geology, 216, 127–143.CrossRefGoogle Scholar
  18. Chai, C., Yu, Z., Song, X., & Cao, X. (2006). The status and characteristics of eutrophication in the Yangtze River (Changjiang) Estuary and the adjacent East China Sea, China. Hydrobiologia, 563, 313–328.CrossRefGoogle Scholar
  19. Coelho, J. P., Flindt, M. R., & Jensen, H. S. (2004). Phosphorus speciation and availability in intertidal sediments of a temperate estuary: relation to eutrophication and annual P-fluxes. Estuarine Coastal and Shelf Science, 61, 583–590.CrossRefGoogle Scholar
  20. Conley, D. J. (2000). Biogeochemical nutrient cycles and nutrient management strategies. Hydrobiologia, 410, 87–96.CrossRefGoogle Scholar
  21. De Groot, C. J. (1990). Some remarks on the presence of organic phosphates in sediments. Hydrobiologia, 207, 303–309.CrossRefGoogle Scholar
  22. De Groot, C. J., & Golterman, H. L. (1993). On the importance of organic phosphate in some Camargue sediments, evidence for the importance of phytate. Hydrobiologia, 252, 117–126.CrossRefGoogle Scholar
  23. Diaz-Espejo, A., Serrano, L., & Toja, J. (1999). Changes in sediment phosphate composition of seasonal ponds during filling. Hydrobiologia, 392, 21–28.CrossRefGoogle Scholar
  24. Dvorakova, J. (1998). Phytase: sources, preparation and exploitation. Folia Microbiologica, 43, 323–338.CrossRefGoogle Scholar
  25. Fang, T. H. (2000). Partitioning and behavior of different forms of phosphorus in the Tanshui estuary and one of its tributaries, Northern Taiwan. Estuarine, Coastal and Shelf Science, 50, 689–701.CrossRefGoogle Scholar
  26. Fisher, T. R., Hagy, J. D., III, Boynton, W. R., & Williams, M. R. (2006). Cultural eutrophication in the Choptank and Patuxent estuaries of Chesapeake Bay. Limnology Oceanography, 51, 435–447.CrossRefGoogle Scholar
  27. Folk, R. L. (1980). Petrology of sedimentary rocks (pp. 26–27). Austin: Hemphill.Google Scholar
  28. Gachter, R., & Muller, B. (2003). Why the phosphorus retention of lakes does not necessarily depend on the oxygen supply to the sediment surface. Limnology and Oceanography, 48, 929–933.CrossRefGoogle Scholar
  29. García, A. R., & de Iorio, A. F. (2003). Phosphorus distribution in sediments of Morales Stream (tributary of the Matanza-Riachuelo River, Argentina). The influence of organic point source contamination. Hydrobiologia, 492, 129–138.CrossRefGoogle Scholar
  30. Gikuma-Njuru, P., Hecky, R. E., & Guildford, S. J. (2010). Surficial sediment phosphorus fractions along a biogeochemical gradient in Nyanza (Winam) Gulf, northeastern Lake Victoria and their possible role in phosphorus recycling and internal loading. Biogeochemistry, 97, 247–261.CrossRefGoogle Scholar
  31. Golterman, H. L. (1995). The role of the iron hydroxide–phosphate–sulphide system in the phosphate exchange between sediments and water. Hydrobiologia, 297, 43–54.CrossRefGoogle Scholar
  32. Golterman, H. L. (1996). Fractionation of sediment phosphate with chelating compounds: a simplification, and comparison with other methods. Hydrobiologia, 335, 87–95.CrossRefGoogle Scholar
  33. Golterman, H. L. (2001). Phosphate release from anoxic sediments or ‘What did Mortimer really write?’. Hydrobiologia, 450, 99–106.CrossRefGoogle Scholar
  34. Gopalan, U. K., Vengayil, D. T., Udaya Varma, V. P., & Krishnankutty, M. (1983). The shrinking backwaters of Kerala. Journal of Marine Biological Association of India, 25, 131–141.Google Scholar
  35. Grasshoff, K., Ehrhardt, M., & Kremling, K. (1983). Methods of sea water analysis (2nd ed.). Weinhein: Verlag Chemie.Google Scholar
  36. Gunnars, A., Blomqvist, S., & Martinsson, C. (2004). Inorganic formation of apatite in brackish seawater from the Baltic Sea: an experimental approach. Marine Chemistry, 91, 15–26.CrossRefGoogle Scholar
  37. Hartzell, J. L., & Jordan, T. E. (2010). Shifts in the relative availability of phosphorus and nitrogen along estuarine salinity gradients. Biogeochemistry. doi: 10.1007/s10533-010-9548-9.
  38. Hecky, R. E., Campbell, P., & Hendzel, L. L. (1993). The stoichiometry of carbon, nitrogen and phosphorus in particulate matter of lakes and oceans. Limnology and Oceanography, 38, 709–724.CrossRefGoogle Scholar
  39. Hedges, J. I., & Keil, R. G. (1995). Sedimentary organic matter preservation: an assessment and speculative hypothesis. Marine Chemistry, 49, 81–115.CrossRefGoogle Scholar
  40. Hedley, M. J., Stewart, J. W. B., & Chauhan, B. S. (1982). Changes in inorganic and organic soil phosphorus fractions induced by cultivation practices and by laboratory incubations. Soil Science Society of America Journal, 46, 970–976.CrossRefGoogle Scholar
  41. Hieltjes, A. H. M., & Lijklema, L. (1980). Fractionation of inorganic phosphates in calcareous sediments. Journal of Environmental Quality, 9, 405–407.CrossRefGoogle Scholar
  42. Hou, L. J., Liu, M., Yang, Y., Ou, D. N., Lin, X., Chen, H., et al. (2009). Phosphorus speciation and availability in intertidal sediments of the Yangtze Estuary, China. Applied Geochemistry, 24, 120–128.CrossRefGoogle Scholar
  43. Howarth, R. W., & Marino, R. (2006). Nitrogen as the limiting nutrient for eutrophication in coastal marine ecosystems: evolving views over three decades. Limnology and Oceanography, 51, 364–376.CrossRefGoogle Scholar
  44. Huang, X. P., Huang, L. M., & Yue, W. Z. (2003). The characteristics of nutrients and eutrophication in the Pearl River estuary, South China. Marine Pollution Bulletin, 47, 30–36.CrossRefGoogle Scholar
  45. Hyacinthe, C., & Van Cappellen, P. (2004). An authigenic iron phosphate phase in estuarine sediments: composition, formation and chemical reactivity. Marine Chemistry, 91, 227–251.CrossRefGoogle Scholar
  46. Ivanoff, D. B., Reddy, K. R., & Robinson, S. (1998). Chemical fractionation of organic phosphorus in selected histosols. Soil Science, 163, 36–45.CrossRefGoogle Scholar
  47. Jensen, H. S., & Thamdrup, B. (1993). Iron-bound phosphorus in marine sediments as measured by bicarbonate-dithionite extraction. Hydrobiologia, 253, 47–59.CrossRefGoogle Scholar
  48. Jensen, H. S., Kristensen, P., Jeppesen, E., & Skytthe, A. (1992). Iron: phosphorus ratio in surface sediment as an indicator of phosphate release from aerobic sediments in shallow lakes. Hydrobiologia, 235(236), 731–743.CrossRefGoogle Scholar
  49. Jensen, H. S., Mortensen, P. B., Andersen, F. O., & Jensen, A. (1995). Phosphorus cycling in a coastal marine sediment, Aarhus Bay, Denmark. Limnology and Oceanography, 36, 908–917.CrossRefGoogle Scholar
  50. Jordan, T. E., Cornwell, J. C., Boynton, W. R., & Anderson, J. T. (2008). Changes in phosphorus biogeochemistry along an estuarine salinity gradient: the iron conveyer belt. Limnology and Oceanography, 53, 172–184.CrossRefGoogle Scholar
  51. Katsaounos, C. Z., Giokas, D. L., Leonardos, J. D., & Karayannis, M. I. (2007). Speciation of phosphorus fractionation in river sediments by explanatory data analysis. Water Research, 41, 406–418.CrossRefGoogle Scholar
  52. Kripa, V., Velayudhan, T. S., Shoji, J., Alloycious, P. S., Joseph, M., Radhakrishnan, P., et al. (2004). Clam fisheries of Vembanad Lake, Kerala with observations on the observations on the socio economic conditions of the clam fishers. Marine Fisheries Information Service Technical and Extension Series, 179, 14–16. (
  53. Krishna Prasad, M. B., & Ramanathan, A. L. (2008). Sedimentary nutrient dynamics in a tropical estuarine mangrove ecosystem. Estuarine Coastal and Shelf Science, 80, 60–66.CrossRefGoogle Scholar
  54. Lakshmilatha, P., & Appukuttan, K. K. (2002). A review of the black clam (Villorita Cyprinoides) fishery of the Vembanad Lake. Indian Journal of Fisheries, 49, 85–91.Google Scholar
  55. Lebo, M. E. (1991). Particle-bound phosphorus along an urbanized coastal plain estuary. Marine Chemistry, 34, 225–246.CrossRefGoogle Scholar
  56. Liu, M., Hou, L. J., Xu, S. Y., Ou, D. N., Zhang, B. L., Liu, Q. M., et al. (2002). The characteristics of phosphate adsorption on tidal surface sediments of the Yangtze Estuary. Acta Geographysica Sinica, 57, 397–406.Google Scholar
  57. Martin, G. D., Vijay, J. G., Laluraj, C. M., Madhu, N. V., Joseph, T., Nair, M., et al. (2008). Fresh water influence on nutrient stoichiometry in a tropical estuary, southwest coast of India. Applied Ecology Environmental Research, 6, 57–64.Google Scholar
  58. Martin, G. D., Muraleedharan, K. R., Vijay, J. G., Rejomon, G., Madhu, N. V., Shivaprasad, A., et al. (2010). Formation of anoxia and denitrification in the bottom waters of a tropical estuary, southwest coast of India. Biogeosciences Discussions, 7, 1751–1782.CrossRefGoogle Scholar
  59. Menon, N. N., Balchand, A. N., & Menon, N. R. (2000). Hydrobiology of the Cochin backwater system—a review. Hydrobiologia, 430, 149–183.CrossRefGoogle Scholar
  60. Nixon, S. W. (1996). The fate of nitrogen and phosphorus at the land–sea margin of the North Atlantic Ocean. Biogeochemistry, 35, 141–180.CrossRefGoogle Scholar
  61. Paludan, C., & Morris, J. T. (1999). Distribution and speciation of phosphorus along a salinity gradient in intertidal marsh sediments. Biogeochemistry, 45, 197–221.Google Scholar
  62. Pardo, P., Lopez-Sanchez, J. F., & Rauret, G. (2003). Relationships between phosphorus fractionation and major components in sediments using the SMT harmonized extraction procedure. Analytical and Bioanalytical Chemistry, 376, 248–254.Google Scholar
  63. Qasim, S. Z. (2003). Indian estuaries (p. 259). Mumbai: Allied.Google Scholar
  64. Raiswell, R., Buckley, F., Berner, R. A., & Anderson, T. F. (1987). Degree of pyritization of iron as a paleoenvironmental indicator of bottom-water oxygenation. Journal of Sedimentary Petrology, 58, 812–819.Google Scholar
  65. Rast, W., & Thornton, J. A. (1996). Trends in eutrophication research and control. Hydrol Process, 10, 295–313. doi: 10.1002/(SICI)1099-1085(199602)10:2B295::AID-HYP360C3.0.CO;2-F.CrossRefGoogle Scholar
  66. Renjith, K. R., Chandramohanakumar, N., & Joseph, M. M. (2011). Fractionation and bioavailability of phosphorus in a tropical estuary, Southwest India. Environmental Monitoring and Assessment, 174, 299–312.CrossRefGoogle Scholar
  67. Riley, J. P., & Chester, R. (Eds.). (1971). Introduction to marine chemistry (p. 465). London: Academic Press.Google Scholar
  68. Rozan, T. F., Taillefert, M., Trouwborst, R. E., Glazer, S., Ma, B. T., Herszage, J., et al. (2002). Iron–sulphur–phosphorus cycling in the sediments of a shallow coastal bay: implications for sediment nutrient release and benthic macroalgal blooms. Limnology and Oceanography, 47, 1346–1354.CrossRefGoogle Scholar
  69. Russell, M. J., Weller, D. E., Jordan, T. E., Sigwart, K. J., & Sullivan, K. J. (2008). Net anthropogenic phosphorus inputs: spatial and temporal variability in the Chesapeake Bay region. Biogeochemistry, 88, 285–304.CrossRefGoogle Scholar
  70. Ruttenberg, K. C. (1992). Development of a sequential extraction method for different forms of phosphorus in marine sediments. Limnology and Oceanography, 37, 1460–1482.CrossRefGoogle Scholar
  71. Ruttenberg, K. C., & Berner, R. A. (1993). Authigenic apatite formation and burial in sediments from non-upwelling continental margin environments. Geochimica et Cosmochimica Acta, 57, 991–1007.CrossRefGoogle Scholar
  72. Rydin, E. (2000). Potentially mobile phosphorous in lake Erken sediment. Water Research, 34, 2037–2042.CrossRefGoogle Scholar
  73. Saraladevi, K. S., Venugopal, P., Remani, K. N., Zacharias, D., & Unnithan, R. V. (1983). Nutrients in some estuaries of Kerala. Mahasagar, 16, 161–173.Google Scholar
  74. Slomp, C. P., Van der Gaast, S. J., & Van Raaphorst, W. (1996). Phosphorus binding by poorly crystalline iron oxides in North Sea sediments. Marine Chemistry, 52, 55–73.CrossRefGoogle Scholar
  75. Søndergaard, M., Jensen, J. P., & Jeppesen, E. (2003). Role of sediment and internal loading of phosphorus in shallow lakes. Hydrobiologia, 506–509, 135–145.CrossRefGoogle Scholar
  76. Spivakov, B. Y., Maryutina, T. A., & Muntau, H. (1999). Phosphorus speciation in water and sediments. Pure Applied Chemistry, 71(11), 2161–2176.CrossRefGoogle Scholar
  77. Srinivas, K., Revichandran, C., Maheswaran, P. A., Mohamed Asharaf, T. T., & Murukesh, N. (2003). Propagation of tides in the Cochin estuarine system, southwest coast of India. Indian Journal of Marine Science, 32(1), 14–24.Google Scholar
  78. Stevens, R. J., & Stewart, B. M. (1982). Concentration, fractionation and characterization of soluble organic phosphorus in river water entering Lough Neagh. Water Research, 16, 1507–1519.CrossRefGoogle Scholar
  79. Strom, R. N., & Biggs, R. B. (1982). Phosphorus distribution in sediments of the Delaware River Estuary. Estuaries, 5, 95–101.CrossRefGoogle Scholar
  80. Thomson, K. T. (2002). Economic and social issues of biodiversity loss in Cochin backwaters. Technical report (pp. 51–82). Cochin, India: Cochin University of Science and Technology.Google Scholar
  81. Thottathil, S. D., Balachandran, K. K., Gupta, G. V. M., Madhu, N. V., & Nair, S. (2008). Influence of allochthonous input on autotrophic–heterotrophic switch-over in shallow waters of a tropical estuary (Cochin estuary), India. Estuarine Coastal Shelf Science, 78, 551–562.CrossRefGoogle Scholar
  82. Tiessen, H., & Moir, J. O. (2008). Characterization of available P by sequential extraction. In M. R. Carter & E. G. Gregorich (Eds.), Soil sampling and methods of analysis (2nd ed., pp. 293–306). Boca Raton: CRC.Google Scholar
  83. Tung, J. W. T., & Tanner, P. A. (2003). Instrumental determination of organic carbon in marine sediments. Marine Chemistry, 80, 161–170.CrossRefGoogle Scholar
  84. Upchurch, J. B., Edzwald, J. K., & O’Melia, C. R. (1974). Phosphates in sediments of Pamlico Estuary. Environmental Science and Technology, 8, 56–63.CrossRefGoogle Scholar
  85. Wang, P., He, M., Lin, C., Men, B., Liu, R., Quan, X., et al. (2009). Phosphorus distribution in the estuarine sediments of the Daliao river, China. Estuarine, Coastal and Shelf Science, 84, 246–252.CrossRefGoogle Scholar
  86. Wen, L. S., Warnken, K. W., & Santschi, P. H. (2008). The role of organic carbon, iron, and aluminium oxyhydroxides as trace metal carriers: comparison between the Trinity River and the Trinity River Estuary (Galveston Bay, Texas). Marine Chemistry, 112, 20–37.CrossRefGoogle Scholar
  87. Wetzel, R. G. (2001). Limnology: lake and river ecosystems (3rd ed.). San Diego: Academic Press.Google Scholar
  88. Whitall, D., Bricker, S., Ferreira, J., Nobre, A. M., Simas, T., & Silva, M. (2007). Assessment of eutrophication in estuaries: pressure–state–response and nitrogen source apportionment. Environmental Management, 40, 678–690.CrossRefGoogle Scholar
  89. Zhou, K. S., Meng, Y., Liu, C. Z., & Hong, X. Q. (2005). Characteristics of aggradation and granularity for the north branch of Changjiang River estuary and its environmental implication. Marine Geological Letters, 21(11), 1–7.Google Scholar
  90. Zwolsman, J. J. G. (1994). Seasonal variability and biogeochemistry of phosphorus in the Scheldt Estuary, South-west Netherlands. Estuarine Coastal and Shelf Science, 39, 227–248.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • T. R. Gireeshkumar
    • 1
  • P. M. Deepulal
    • 1
  • N. Chandramohanakumar
    • 1
  1. 1.Department of Chemical Oceanography, School of Marine SciencesCochin University of Science and TechnologyKochiIndia

Personalised recommendations