Advertisement

Environmental Monitoring and Assessment

, Volume 185, Issue 3, pp 2395–2406 | Cite as

Evaluation of surface water quality in aquatic bodies under the influence of uranium mining (MG, Brazil)

  • Suzelei Rodgher
  • Heliana de Azevedo
  • Carla Rolim Ferrari
  • Cláudio Vítor Roque
  • Leilane Barbosa Ronqui
  • Michelle Burato de Campos
  • Marcos Roberto Lopes Nascimento
Article

Abstract

The quality of the water in a uranium-ore-mining area located in Caldas (Minas Gerais State, Brazil) and in a reservoir (Antas reservoir) that receives the neutralized acid solution leaching from the waste heaps generated by uranium mining was investigated. The samples were collected during four periods (October 2008, January, April and July 2009) from six sampling stations. Physical and chemical analyses were performed on the water samples, and the data obtained were compared with those of the Brazilian Environmental Standards and WHO standard. The water samples obtained from waste rock piles showed high uranium concentrations (5.62 mg L−1), high manganese values (75 mg L−1) and low average pH values (3.4). The evaluation of the water quality at the point considered the limit between the Ore Treatment Unit of the Brazilian Nuclear Industries and the environment (Consulta Creek) indicated contamination by fluoride, manganese, uranium and zinc. The Antas reservoir showed seasonal variations in water quality, with mean concentrations for fluoride (0.50 mg L−1), sulfate (16 mg L−1) and hardness (20 mg L−1) which were low in January, evidencing the effect of rainwater flowing into the system. The concentrations for fluoride, sulfate and manganese were close or above to the limits established by current legislation at the point where the treated mining effluent was discharged and downstream from this point. This study demonstrated that the effluent discharged by the UTM affected the quality of the water in the Antas reservoir, and thus the treatments currently used for effluent need to be reviewed.

Keywords

Brazilian reservoir Metals Water pollution Uranium mine 

Notes

Acknowledgments

The authors are grateful to Dr. Ana T. Lombardi for her comments on this work. This study was supported by the Brazilian National Research Council (CNPq proc. no. 381412/2008-3) and the State of Minas Gerais Research Aid Foundation (FAPEMIG proc. no APQ-7807-5.04/07).

References

  1. Abdelouas, A. (2006). Uranium mill tailings: geochemistry, mineralogy, and environmental impact. Elements, 2(6), 335–341.CrossRefGoogle Scholar
  2. Amaral, E. C. S., Godoy, J. M., Rochedo, E. R. R., Vasconcellos, L. M. H., & Pires do Rio, M. A. (1988). The environmental impact of the uranium industry: is the waste rock a significant contributor? Radiation Protection Dosimetry, 22(3), 165–171.Google Scholar
  3. American Public Health Association; American Water Work Association; Water Control Federation (APHA/AWWA/WCPF). (1995). Standard methods for examination of water and wastewater (20th ed.). Washington: American Public Health Association.Google Scholar
  4. American Society for Testing and Materials (ASTM). (1980). Annual book of ASTM standards. Philadelphia: American Society for Testing and Materials.Google Scholar
  5. Ayres, M., Ayres, M., Jr., Ayres, D. L., & Santos, A. S. (2005). BioEstat 2.0: aplicações estatística na área das Ciências Biológicas e Médicas. Mamirauá: Editora Gráfica Ltda.Google Scholar
  6. Baborowski, M., & Bozau, E. (2006). Impact of former mining activities on the uranium distribution in the River Saale (Germany). Applied Geochemistry, 21(6), 1073–1082.CrossRefGoogle Scholar
  7. Brandenberger, J., Louchouarn, P., Herbert, B., & Tissot, P. (2004). Geochemical and hydrodynamic controls on arsenic and trace metal cycling in a seasonally stratified US sub-tropical reservoir. Applied Geochemistry, 19(10), 1601–1623.CrossRefGoogle Scholar
  8. Campos, M. B., Azevedo, H., Nascimento, M. R. L., Roque, C. V., & Rodgher, S. (2011). Environmental assessment of water from uranium mine (Caldas, Minas Gerais state, Brazil) in decommissioning operation. Environmental Earth Sciences, 62(4), 857–863.CrossRefGoogle Scholar
  9. Carlson, R. E. (1977). A trophic state index for lakes. Limnology and Oceanography, 22(2), 361–369.CrossRefGoogle Scholar
  10. Chevychelov, A. P., D’yachkovskii, A. P., Sobakin, P. I., & Kuznetsova, L. I. (2010). Surface water radioactive pollution in South Yakutia anthropogenic landscapes. Contemporary Problems of Ecology, 3(4), 381–385.CrossRefGoogle Scholar
  11. Clifford, M., & McGeer, J. C. (2009). Development of a biotic ligand model for the acute toxicity of zinc to Daphnia pulex in soft waters. Aquatic Toxicology, 91(1), 26–32.CrossRefGoogle Scholar
  12. CONAMA Resolução nº 357, de 17 de março de 2005 (2005) “Resolução do CONAMA para a classificação dos corpos de água para o seu enquadramento, bem como estabelecimento das condições e padrões de lançamento de efluentes,” seção I, pp. 58–63. Brasília.Google Scholar
  13. Eisler, R. (1993). Zinc hazards to fish, wildlife, and invertebrates: a synoptic review. Laurel: U.S. Contaminant Hazard Reviews Department of the Interior Fish and Wildlife Service Patuxent Wildlife Research Center.Google Scholar
  14. Fargašová, A., Bumbálová, A., & Havránek, E. (1999). Ecotoxicological effects and uptake of metals (Cu+, Cu2+, Mn2+, Mo6+, Ni2+, V5+) in freshwater alga Scenedesmus quadricauda. Chemosphere, 38(5), 1165–1173.CrossRefGoogle Scholar
  15. Fernandes, H. M., Franklin, M. R., & Gomieiro, L. A. (2008). Critical analysis of the waste management performance of two uranium production units in Brazil-part I: Poços de Caldas production centre. Journal of Environmental Management, 87(1), 59–72.CrossRefGoogle Scholar
  16. Fernandes, H. M., Veiga, L. H. S., Franklin, M. R., Prado, V. C. S., & Taddei, J. F. (1995). Environmental impact assessment of uranium mining and milling facilities: a study case at the Poços de Caldas uranium mining and milling site, Brazil. Journal of Geochemical Exploration, 52(1–2), 161–173.CrossRefGoogle Scholar
  17. Ferrari, C. R. (2010). Avaliação de efeitos de efluentes radioativos de mineração de urânio sobre características físicas, químicas e diversidade da comunidade zooplanctônica na Unidade de Tratamento de Minérios, na Represa das Antas e Represa Bortolan, Poços de Caldas (MG). Dissertação. Universidade de São PauloGoogle Scholar
  18. Franklin, N. M., Stauber, J. L., Markich, S. J., & Lim, R. P. (2000). pH-dependent toxicity of copper and uranium to a tropical freshwater alga (Chlorella sp.). Aquatic Toxicology, 48(2-3), 275–289.CrossRefGoogle Scholar
  19. Fukuma, H. T., De Nadai Fernandes, E. A., Nascimento, M. R. L., & Quinelato, A. L. (2001). Separation and spectrophotometric determination of thorium contained in uranium concentrates. Journal of Radioanalytical and Nuclear Chemistry, 248(3), 549–553.CrossRefGoogle Scholar
  20. Golterman, H. L., Clymo, R. S., & Ohnstad, M. A. M. (1978). Methods for physical and chemical analysis of freshwaters. Oxford: Blackwell.Google Scholar
  21. Greig, H., Niyogi, D. K., Hogsden, K. L., Jellyman, P. G., & Harding, J. S. (2010). Heavy metals: confounding factors in the response of New Zealand freshwater fish assemblages to natural and anthropogenic acidity. Science of the Total Environment, 408(16), 3240–3250.CrossRefGoogle Scholar
  22. INB (1999). Indústrias Nucleares do Brasil Relatório Ambiental—Complexo Industrial do Planalto de Poços de Caldas—CIPC para solicitar Licença de Operação junto ao IBAMA. Diretoria de Recursos Minerais, Poços de Caldas: DRM da INBGoogle Scholar
  23. Kim, S. D., Gu, M. B., Allen, H. E., & Cha, D. K. (2001). Physiochemical factors affecting the sensitivity of Ceriodaphnia dubia to copper. Environmental Monitoring and Assessment, 70(1–2), 105–116.CrossRefGoogle Scholar
  24. Kozlova, T., Wood, C. M., & McGeer, J. C. (2009). The effect of water chemistry on the acute toxicity of nickel to the cladoceran Daphnia pulex and the development of a biotic ligand model. Aquatic Toxicology, 91(3), 221–228.CrossRefGoogle Scholar
  25. Ladeira, A. C. Q., & Gonçalves, C. R. (2007). Influence of anionic species on uranium separation from acid mine water using strong base resins. Journal of Hazardous Materials, 148(3), 499–504.CrossRefGoogle Scholar
  26. Lasier, P. J., Winger, P. V., & Bogenrieder, K. J. (2000). Toxicity of Manganese to Ceriodaphnia dubia and Hyalella azteca. Archives Environmental Contamination and Toxicology, 38(3), 298–304.CrossRefGoogle Scholar
  27. Lorenzen, C. J. (1967). Determination of chlorophyll and phaeopigments: spectrophotometric equations. Limnology and Oceanography, 12(2), 343–346.CrossRefGoogle Scholar
  28. Lozano, J. C., Rodriguez, B. P., & Tomé, F. V. (2002). Distribution of long-lived radionuclides of the 238U in the sediments of a small river in a uranium mineralized region of Spain. Journal Environmental Radioactivity, 63(2), 153–171.CrossRefGoogle Scholar
  29. Maier, R. M., Pepper, I. L., & Gerba, C. P. (2000). Environmental microbiology. San Diego: Academic.Google Scholar
  30. Martin, T. D., Creed, J. T., & Brockhoff, C. A. (1994). EPA method 200.2 sample preparation procedure for spectrochemical determination of total recoverable elements, EPA/600/R-94/111. Cincinnati: EPA.Google Scholar
  31. Mount, D. I., & Norberg, T. J. (1984). A seven life-cycle cladoceran toxicity test. Environmental Toxicology and Chemistry, 3(3), 425–434.CrossRefGoogle Scholar
  32. Muscatello, J. R., Belknap, A. M., & Janz, D. M. (2008). Accumulation of selenium in aquatic systems downstream of a uranium mining operation in northern Saskatchewan, Canada. Environmental Pollution, 156(2), 387–393.CrossRefGoogle Scholar
  33. Nascimento, M. R. L., Fukuma, H. T., & Hortellani, M. A. (1988). Projeto Itataia—Controle de processo na produção de ácidos fosfórico e urânio. (Manual de Métodos e Análises Químicas). Poços de Caldas: INB.Google Scholar
  34. Naselli-Flores, L. (1999). Limnological aspects of Sicilian Reservoir: A comparative ecosystemic approach. In M. Straskraba & J. G. Tundisi (Eds.), Theoretical reservoir ecology and its applications (pp. 293–312). São Carlos: Backhuys.Google Scholar
  35. Neves, O., & Matias, M. J. (2004). Focos de poluição na área mineira da Cunha Baixa (Viseu, Portugal). Cadernos do Laboratorio Xeolóxico de Laxe, 29, 187–202.Google Scholar
  36. Neves, O., & Matias, M. J. (2008). Assessment of groundwater quality and contamination problems ascribed to an abandoned uranium mine (Cunha Baixa region, Central Portugal). Environmental Geology, 53(8), 1799–1810.CrossRefGoogle Scholar
  37. Nóbrega, F. A., Andrade, H. M. L., & Leite, A. L. (2008). Análise de múltiplas variáveis no fechamento de mina—Estudo de caso da pilha de estéril BF-4, Mina Osamu Utsumi, INB Caldas, Minas Gerais. Revista Escola de Minas, 61(2), 197–200.CrossRefGoogle Scholar
  38. Oliveira, J. M. S., & Ávila, P. F. (2001). Geoquímica na área envolvente da Mina da Cunha Baixa (Mangualde, no centro de Portugal). Estudos, Notas e Trabalhos, Tomo. Mangualde: Instituto Geológico e Mineiro.Google Scholar
  39. Penttinen, S., Kostamo, A., & Kukkonen, J. V. K. (1998). Combined effects of dissolved organic material and water hardness on toxicity of cadmium to Daphnia magna. Environmental Toxicology and Chemistry, 17(12), 2498–2503.Google Scholar
  40. Peterson, H. G., Healey, F. P., & Wagemann, R. (1984). Metal toxicity to algae: a highly pH dependent phenomenon. Canadian Journal of Fisheries and Aquatic Sciences, 41(6), 974–979.CrossRefGoogle Scholar
  41. Pyle, G. G., Swanson, S. M., & Lehmkuhl, D. M. (2002). The influence of water hardness, pH, and suspended solids on nickel toxicity to larval fathead minnows (Pimephales promelas). Water, Air, and Soil Pollution, 133(1–4), 215–226.CrossRefGoogle Scholar
  42. Qian, Y., Zheng, M. H., Gao, L., Zhang, B., Liu, W., Jiao, W., et al. (2005). Heavy metal contamination and its environmental risk assessment in surface sediments from Lake Dongting, People’s Republic of China. Bulletin Environmental Contamination and Toxicology, 75(1), 204–210.CrossRefGoogle Scholar
  43. Reimer, P. S. (1999). Environmental effects of manganese and proposed freshwater guidelines to protect aquatic life in British Columbia. MSc thesis, University of British Columbia.Google Scholar
  44. Roque, C. V., Dellamano de Oliveira, M. J., Nascimento, M. R. L., Ronqui, L. B., Campos, M. B., Ferrari, C. R., Rodgher, S. & Azevedo, H. (2009). Effects of uranium effluents (Caldas, Southeastern Brazil) on the aquatic biota: preliminary study on the phytoplankton community. International Nuclear Atlantic Conference. INAC 2009. Rio de Janeiro (RJ). Associação Brasileira de Energia Nuclear.Google Scholar
  45. Sarmiento, A. G., Olías, M., Nieto, J. M., Cánovas, J. D., & Delgado, J. (2009). Natural attenuation processes in two water reservoirs receiving acid mine drainage. Science of the Total Environment, 407, 2051–2062.CrossRefGoogle Scholar
  46. Semaan, M. D., Holdway, A., & van Dam, R. A. (2001). Comparative sensitivity of three populations of the cladoceran Moinodaphnia macleayi to acute and chronic Uranium exposure. Environmental Toxicology, 16(5), 365–376.CrossRefGoogle Scholar
  47. Sheppard, S. C., Sheppard, M. I., Gallerand, M. O., & Sanipelli, B. (2005). Derivation of ecotoxicity thresholds for uranium. Journal Environmental Radioactivity, 79(1), 55–83.CrossRefGoogle Scholar
  48. Spear, P. A. (1981). Zinc in the aquatic environment: chemistry, distribution, and toxicology. Ottawa: National Research Council of Canada. Publication NRCC 17589.Google Scholar
  49. Teixeira, C., Tundisi, J. G., & Kutner, M. B. (1965). Plankton studies in a mangrove II. The standing stock and some ecological factors. Boletim Instituto Oceanográfico, 14, 13–42.CrossRefGoogle Scholar
  50. Trontelj, A., & Ponikvar-Zorko, P. (1998). Influence of a uranium mine on the macrozoobenthic communities of the streams in the nearest environs, Slovenia. Water Science Technology, 37(8), 235–241.CrossRefGoogle Scholar
  51. Tundisi, J. G., Matsumura-Tundisi, T., & Rocha, O. (1999). Theoretical basis for reservoir management. In M. Straskraba & J. G. Tundisi (Eds.), Theoretical reservoir ecology and its applications (pp. 505–528). São Carlos: Backhuys.Google Scholar
  52. Turbak, S. C., Olson, S. B., & McFeters, G. A. (1986). Comparison of algal assays systems for detecting waterborne herbicides and metals. Water Resource, 20(1), 91–96.Google Scholar
  53. Tutu, H., McCarthy, T. S., & Cukrowska, E. (2008). The chemical characteristics of acid mine drainage with particular reference to sources, distribution and remediation: the Witwatersrand Basin, South Africa as a case study. Applied Geochemistry, 23(12), 3666–3684.CrossRefGoogle Scholar
  54. U.S. Environmental Protection Agency (2004). Drinking water health advisory for Manganese. Office of Water 4304T. Health and Ecological Criteria Div CAS Registry EPA-822-R-04-003 Number 7440-50.8. Washington, DC: EPA.Google Scholar
  55. Zeman, F. A., Gilbin, R., Alonzo, F., Lecomte-Pradines, C., Garnier-Laplace, J., & Aliaume, C. (2008). Effects of waterborne uranium on survival, growth, reproduction and physiological processes of the freshwater cladoceran Daphnia magna. Aquatic Toxicology, 86(3), 370–378.CrossRefGoogle Scholar
  56. Weir, E. (2003). Uranium in drinking water, naturally. Canadian Medical Association Journal or its Licensors, 170(6), 951–952.CrossRefGoogle Scholar
  57. Wetzel, R. G. (1993). Limnologia. Fundação Calouste Gulbenkian: Trad. Maria José Boavida. Lisboa.Google Scholar
  58. Winde, F. (2010). Uranium pollution of the Wonderfonteinspruit, 1997–2008 Part 1: Uranium toxicity, regional background and mining-related sources of uranium pollution. Water SA, 36(3), 239–256.Google Scholar
  59. World Health Organization (WHO). (2004). Manganese and its compounds: environmental aspects concise international chemical assessment document 63. Geneva: World Health Organization.Google Scholar
  60. World Health Organization (WHO). (2011). Guidelines for drinking-water quality (4th ed.). Geneva: World Health Organization.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Suzelei Rodgher
    • 1
  • Heliana de Azevedo
    • 1
  • Carla Rolim Ferrari
    • 1
  • Cláudio Vítor Roque
    • 1
  • Leilane Barbosa Ronqui
    • 1
  • Michelle Burato de Campos
    • 1
  • Marcos Roberto Lopes Nascimento
    • 1
  1. 1.Poços de Caldas LaboratoryBrazilian Nuclear Energy CommissionPoços de CaldasBrazil

Personalised recommendations