Environmental Monitoring and Assessment

, Volume 185, Issue 3, pp 2179–2187 | Cite as

Toxicity assessment of textile effluents treated by advanced oxidative process (UV/TiO2 and UV/TiO2/H2O2) in the species Artemia salina L.

  • Juliana Carla Garcia
  • Thábata Karoliny Formicoly de Souza Freitas
  • Soraya Moreno Palácio
  • Elizangela Ambrósio
  • Maísa Tatiane Ferreira Souza
  • Lídia Brizola Santos
  • Vitor de Cinque Almeida
  • Nilson Evelázio de Souza


Textile industry wastes raise a great concern due to their strong coloration and toxicity. The objective of the present work was to characterize the degradation and mineralization of textile effluents by advanced oxidative processes using either TiO2 or TiO2/H2O2 and to monitor the toxicity of the products formed during 6-h irradiation in relation to that of the in natura effluent. The results demonstrated that the TiO2/H2O2 association was more efficient in the mineralization of textile effluents than TiO2, with high mineralized ion concentrations (NH 4 + , NO 3 , and SO 4 2− ) and significantly decreased organic matter ratios (represented by the chemical oxygen demand and total organic carbon). The toxicity of the degradation products after 4-h irradiation to Artemia salina L. was not significant (below 10 %). However, the TiO2/H2O2 association produced more toxicity under irradiation than the TiO2 system, which was attributed to the increased presence of oxidants in the first group. Comparatively, the photogenerated products of both TiO2 and the TiO2/H2O2 association were less toxic than the in natura effluent.


Biological monitoring Aquatic environment Textile effluents Photodegradation Mineralization 



The authors would like to thank CNPq, CAPES, Fundação Araucária, and MR-Malharia for their support.


  1. APHA—American Public Health Association. (1998). Standard methods for the examination of water and wastewater (20th ed.). Washington, DC: AWWA, WPCF.Google Scholar
  2. Barnabé, G. (1994). Aquaculture—biology and ecology of cultured species. Grã Bretanha: Ellis Horwood.Google Scholar
  3. Beltrami, M., Baudo, R., & Rossi, D. (1999). In situ tests to assess the potential toxicity of aquatic sediments. Aquatic Ecosystem Health and Management, 2(4), 361–365.CrossRefGoogle Scholar
  4. Bizukoje, E. L., Miksch, K., Jutsz, A. M., & Kalka, J. (2005). Acute toxicity and genotoxicity of five selected anionic and nonionic surfactants. Chemosphere, 58(9), 1249–1253.CrossRefGoogle Scholar
  5. Boroski, M., Rodrigues, A. C., Garcia, J. C., Gerola, A. P., Nozaki, J., & Hioka, N. (2008). The effect of operational parameters on electrocoagulation–flotation process followed by photocatalysis applied to the decontamination of water effluents from cellulose and paper factories. Journal of Hazardous Materials, 160, 135–141.CrossRefGoogle Scholar
  6. Calow, P. (1993). Marine and estuarine invertebrate toxicity tests. In D. Hoffman, B. Rattner, A. Burton, & J. Carns (Eds.), Handbook in ecotoxicology (Vol. 1). Londres: Blackwell Scientific Publication.Google Scholar
  7. Casa, R., Annibale, A. D., Pieruccetti, F., Stazi, S. R., Sermanni, G. G., & Cascio, B. L. (2003). Reduction of the phenolic components in olive mill wastewater by na enzymatic treatment and its impact on durum wheat (Triticum durum Desf.) germinability. Chemosphere, 50(8), 959–966.CrossRefGoogle Scholar
  8. Colović, M., Krstić, D., Petrović, S., Leskovac, A., Joksić, G., Savić, J., et al. (2010). Toxic effects of diazinon and its photodegradation products. Toxicology Letters, 193(1), 9–18.CrossRefGoogle Scholar
  9. Costa, F. A. P., Reis, E. M., Azevedo, J. C. R., & Nozaki, J. (2004). Bleaching and photodegradation of textile dyes by H2O2 and solar and ultraviolet irradiation. Solar Energy, 77(1), 29–35.CrossRefGoogle Scholar
  10. Daneshvar, N., Rabbani, M., Modirshahla, N., & Behnajady, M. A. (2004). Kinetic modeling of photocatalytic degradation of Acid Red 27 in UV/TiO2 process. Journal of Photochemistry and Photobiology A: Chemistry, 168(1, 2), 39–45.CrossRefGoogle Scholar
  11. Dwyer, J., Kavanagh, L., & Lant, P. (2008). The degradation of dissolved organic nitrogen associated with melanoidin using a UV/H2O2 AOP. Chemosphere, 71(9), 1745–1753.CrossRefGoogle Scholar
  12. Fernandez-Alba, A. R., Hernando, D., Aguera, A., Cáceres, J., & Malato, S. (2002). Toxicity assays: a way for evaluating AOPs efficiency. Water Research, 36(17), 4255–4262.CrossRefGoogle Scholar
  13. Ferreira, D. F. (1999). SISVAR 4.3 Software. DEX/UFLA.Google Scholar
  14. Garcia, J. C., Boroski, M., Oliveira, J. L., Silva, A. E. C., & Nozaki, J. (2006). Solar and ultraviolet photodegradation of four textile dyes. In Trends in Solar Energy Research. New York: Nova Publishers.Google Scholar
  15. Garcia, J. C., Oliveira, J. L., Silva, A. E. C., Oliveira, C. C., Nozaki, J., & Souza, N. E. (2007). Comparative study of the degradation of real textile effluents by photocatalytic reactions involving UV/TiO2/H2O2 and UV/Fe2+/H2O2 systems. Journal of Hazardous Materials, 147(1, 2), 105–110.CrossRefGoogle Scholar
  16. Garcia, J. C., Simionato, J. I., Silva, A. E. C., Nozaki, J., & Souza, N. E. (2009a). Solar photocatalytic degradation of real textile effluents by associated titanium dioxide and hydrogen peroxide. Solar Energy, 83(3), 316–322.CrossRefGoogle Scholar
  17. Garcia, J. C., Simionato, J. I., Almeida, V. C., Palácio, S. M., Rossi, F. L., Schneider, M. V., et al. (2009b). Evolutive follow-up of the photocatalytic degradation of real textile effluents in TiO2 and TiO2/H2O systems and their toxic effects on Lactuca sativa seedlings. Journal of the Brazilian Chemical Society, 20(9), 1589–1597.CrossRefGoogle Scholar
  18. Guaratini, C. C. I., & Zanoni, M. V. B. (2000). Corantes Têxteis. Química Nova, 23(1), 71–77.CrossRefGoogle Scholar
  19. Guerra, R. (2001). Ecotoxicological and chemical evaluation of phenolic compounds in industrial effluents. Chemosphere, 44(8), 1737–1747.CrossRefGoogle Scholar
  20. Hoffmann, M. R., Martin, S. T., Choi, W., & Bahnemann, D. W. (1995). Environmental applications of semiconductor photocatalysis. Chemical Reviews, 95(1), 69–96.CrossRefGoogle Scholar
  21. Karthikeyan, S., Titus, A., Gnanamani, A., Mandal, A. B., & Sekaran, G. (2011). Treatment of textile wastewater by homogeneous and heterogeneous Fenton oxidation processes. Desalination, 281(17), 438–445.CrossRefGoogle Scholar
  22. Kummerová, M., & Kmentová, E. (2004). Photoinduced toxicity of fluoranthene on germination and early development of plant seedling. Chemosphere, 56(4), 387–393.CrossRefGoogle Scholar
  23. Li, G., Wong, K. H., Zhang, X., Hu, C., Yu, J. C., Chan, R. C. Y., et al. (2009). Degradation of Acid Orange 7 using magnetic AgBr under visible light: the roles of oxidizing species. Chemosphere, 76(9), 1185–1191.CrossRefGoogle Scholar
  24. Menezes, J. C. S. S., Pizzolato, T. M., & Schneider, A. H. (2005). Avaliação dos processos de coagulação/floculação, adsorção e reação Fenton no tratamento de efluente de uma lavanderia industrial. Química Têxtil, 79, 36–44.Google Scholar
  25. Meyer, B. N., Ferrigini, N., Putnam, J. E., Jacobsen, L. B., Nichols, D. E., & McLaughlin, J. L. (1982). Brine shrimp: a convenient general bioassay for active plant constituents. Planta Medica, 45, 35–36.CrossRefGoogle Scholar
  26. Okamura, H., Kitano, S., Toyota, S., Harino, H., & Thomas, K. V. (2009). Ecotoxicity of the degradation products of triphenylborane pyridine (TPBP) antifouling agent. Chemosphere, 74(9), 1275–1278.CrossRefGoogle Scholar
  27. Oturan, N., Trajkovska, S., Oturan, M. A., Couderchet, M., & Aaron, J. J. (2008). Study of the toxicity of diuron and its metabolites formed in aqueous medium during application of the electrochemical advanced oxidation process “electro-Fenton”. Chemosphere, 73(9), 1550–1556.CrossRefGoogle Scholar
  28. Palácio, S. M., Espinoza-Quiñones, F. R., Módenes, A. N., Oliveira, C. C., Borba, F. H., & Silva, F. G., Jr. (2009). Toxicity assessment from electro-coagulation treated-textile dye wastewaters by bioassays. Journal of Hazardous Materials, 172(1), 330–337.CrossRefGoogle Scholar
  29. Pare, B., Jonnalagadda, S. B., Tomar, H., Singh, P., & Bhagwat, V. W. (2008). ZnO assisted photocatalytic degradation of acridine orange in aqueous solution using visible irradiation. Desalination, 232(1–3), 80–90.CrossRefGoogle Scholar
  30. Pinheiro, H. M., Touraud, E., & Thomas, O. (2004). Aromatic amines from azo dye reduction: status review with emphasis on direct UV spectrophotometric detection in textile industry wastewater. Dyes and Pigments, 61(2), 121–139.CrossRefGoogle Scholar
  31. Rajeshwar, K., & Ibanez, J. (1997). Environmental eletrochemistry: fundamentals and applications in pollution abatement. San Diego: Academic.Google Scholar
  32. Reemtsma, T. (2001). Prospects of toxicity-directed wastewater analysis. Analytica Chimica Acta, 426(2, 12), 279–287.CrossRefGoogle Scholar
  33. Rizzo, L. (2011). Bioassays as a tool for evaluating advanced oxidation processes in water and wastewater treatment. Water Research, 45(15), 4311–4340.CrossRefGoogle Scholar
  34. Rodrigues, A. C., Boroski, M., Shimada, N. S., Garcia, J. C., Nozaki, J., & Hioka, N. (2008). Treatment of paper pulp and paper mill wastewater by coagulation–flocculation followed by heterogeneous photocatalysis. Journal of Photochemistry and Photobiology A: Chemistry, 194(1, 5), 1–10.CrossRefGoogle Scholar
  35. Santana, M. H. P., Silva, L. M., Freitas, A. C., Boodts, J. F. C., Fernandes, K. C., & Faria, L. A. (2009). Application of electrochemically generated ozone to the discoloration and degradation of solutions containing the dye Reactive Orange 122. Journal of Hazardous Materials, 164(1), 10–17.CrossRefGoogle Scholar
  36. Sauer, T. P., Casaril, L., Oberziner, A. L. B., José, H. J., & Moreira, R. F. P. M. (2006). Advanced oxidation processes applied to tannery wastewater containing Direct Black 38—elimination and degradation kinetics. Journal of Hazardous Materials, 135(1–3), 274–279.CrossRefGoogle Scholar
  37. Silva, C. G., & Faria, J. L. (2003). Photochemical and photocatalytic degradation of an azo dye in aqueous solution by UV irradiation. Journal of Photochemistry and Photobiology A: Chemistry, 155(1, 3), 133–143.CrossRefGoogle Scholar
  38. Silva, J., Erdtmann, B., & Henriques, J. A. P. (2003). Genética toxicológica. Porto Alegre: Editora Alcance.Google Scholar
  39. Silva, M. R. A., Oliveira, M. C., & Nogueira, R. F. P. (2004). Estudo da aplicação do processo Foto-Fenton solar na degradação de efluentes de industrias de tintas. Eclética Química, 29(2), 19–26.CrossRefGoogle Scholar
  40. Simonsen, M. E., Muff, J., Bennedsen, L. R., Kowalski, K. P., & Sogaard, E. G. (2010). Photocatalytic bleaching of p-nitrosodimethylaniline and a comparison to the performance of other AOP technologies. Journal of Photochemistry and Photobiology A: Chemistry, 216(2–3), 244–249.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Juliana Carla Garcia
    • 1
  • Thábata Karoliny Formicoly de Souza Freitas
    • 1
  • Soraya Moreno Palácio
    • 2
  • Elizangela Ambrósio
    • 1
  • Maísa Tatiane Ferreira Souza
    • 1
  • Lídia Brizola Santos
    • 1
  • Vitor de Cinque Almeida
    • 1
  • Nilson Evelázio de Souza
    • 1
  1. 1.Departamento de QuímicaUniversidade Estadual de MaringáMaringáBrazil
  2. 2.Departamento de QuímicaUniversidade Estadual do Oeste do ParanáToledoBrazil

Personalised recommendations