Environmental Monitoring and Assessment

, Volume 185, Issue 2, pp 1737–1754 | Cite as

Sorbed metals fractionation and risk assessment of release in river sediment and particulate matter

  • M. Saeedi
  • L. Y. Li
  • A. R. Karbassi
  • A. J. Zanjani


Fractionation of metals in natural sediment and suspended particulate matter (SPM) of Tadjan River is investigated. Competitive sorption, sorption capacities of sediment and SPM as well as fractionation of metal-loaded sediment and SPM are also examined. A risk assessment code (RAC) is applied to estimate the risk of heavy metals release into the environment during the sorption process. Results revealed that sediments and SPM containing more than 25 % of clay minerals and higher amounts of calcite have great capacity of metal sorption, particularly for Cu, Ni, and Mn. Assessing the risk of metals release prior to and following sorption tests indicates that RAC of metals would significantly increase from the level of no or low risk in natural sediment and SPM to high or very high risk after sorption. The Langmuir model reveals that the highest affinity for Cu, Mn, and Ni in sediment is the organic fraction. The classic isotherm models of Freundlich and Langmuir can fit the data from chemical extraction studies of adsorbed metals, indicating that although sorption was apparently a physical and chemical process in the river, isotherm models can be used to simulate the sorption and accumulation in different geochemical phases within the particulate matter.


Heavy metals Risk assessment Sediment Tadjan River Fractionation Sorption 



This research has been financially supported by Iran National Science Foundation (INSF).


  1. Ackay, H., Oguz, A., & Karapire, C. (2003). Study of heavy metal pollution and speciation in Buyak Menderes and Gediz river sediments. Water Research, 37(4), 813–822.CrossRefGoogle Scholar
  2. Baptista Neto, J. A., Smith, B. J., & Mc Allister, J. J. (2000). Heavy metal concentrations in surface sediments in a near shore environment, Jurujuba Sound, Southeast Brazil. Environmental Pollution, 109(1), 1–9.CrossRefGoogle Scholar
  3. Bhattacharyya, K. G., & Gupta, S. S. (2008). Adsorption of a few heavy metals on natural and modified kaolinite and montmorillonite: a review. Advances in Colloid and Interface Science, 140(2), 114–131.CrossRefGoogle Scholar
  4. Calmano, W., Hong, J., & Förstner, U. (1993). Binding and mobilization of heavy metals in contaminated sediments affected by pH and redox potential. Water Science and Technology, 28(8–9), 223–235.Google Scholar
  5. Charkhabi, A. H., Sakizadeh, M., & Rafiee, G. (2005). Seasonal fluctuation in heavy metal pollution in Iran's Siahroud River. Environmental Science and Pollution Research, 12(5), 264–270.CrossRefGoogle Scholar
  6. Freundlich, H. M. F. (1906). Über die Adsorption in Lösungen. Zeitschrift für Physikalische Chemie, 57, 385–470.Google Scholar
  7. Gibbs, R. J. (1977). Transport phases of transition metals in the Amazon and Yukon Rivers. Geological Society of America Bulletin, 88(6), 829–843.CrossRefGoogle Scholar
  8. Glasby, G. P., & Szefer, P. (1998). Marine pollution in Gdansk Bay, Puck Bay and the Vistula Lagoon, Poland: an overview. The Science of the Total Environment, 212(1), 49–57.CrossRefGoogle Scholar
  9. Glosinska, G., Sobczynski, T., Boszke, L., Bierla, K., & Siepak, J. (2005). Fractionation of some heavy metals in bottom sediments from the middle Odra River (Germany/Poland). Polish Journal of Environmental Studies, 14(3), 305–317.Google Scholar
  10. Green-Pedersen, H., Jensen, B. T., & Pind, N. (1997). Nickel adsorption on MnO2, Fe(OH)3, montmorillonite, humic acid and calcite: a comparative study. Environmental Technology, 18(8), 807–815.CrossRefGoogle Scholar
  11. Hatje, V., Apte, S. C., Hales, L. T., & Birch, G. F. (2003). Dissolved trace metal distributions in Port Jackson estuary (Sydney Harbour). Australia. Marine Pollution Bulletin, 46, 719–730.CrossRefGoogle Scholar
  12. Ho, Y. S., Chiu, W. T., & Wang, C. C. (2005). Regression analysis for the sorption isotherms of basic dyes on sugarcane dust. Bioresource Technology, 96(11), 1285–1291.CrossRefGoogle Scholar
  13. Hooda, P. S., & Alloway, B. J. (1998). Cadmium and lead sorption behaviour of selected English and Indian soils. Geoderma, 84(1–3), 121–134.CrossRefGoogle Scholar
  14. Jain, C. K. (2004). Metal fractionation study on bed sediments of River Yamuna, India. Water Research, 38(3), 569–578.CrossRefGoogle Scholar
  15. Karbassi, A. R., Nouri, J., & Ayaz, G. O. (2007). Flocculation of trace metals during mixing of Talar River Water with Caspian Seawater. International Journal of Environmental Research, 1(1), 66–73.Google Scholar
  16. Karbassi, A. R., Saeedi, M., & Amirnejad, R. (2008). Historical changes of heavy metals content and sequential extraction in a sediment core from the Gorgan Bay, Southeastern Caspian See. Indian Journal of Marine Sciences, 37(3), 267–272.Google Scholar
  17. Karbassi, A. R., Monavari, S. M., Nabi Bidhendi, Gh. R., Nouri, J., & Nematpour, K. (2008). Metal pollution assessment of sediment and water in the Shur River. Environmental Monitoring and Assessment, 147(1–3), 107–116.CrossRefGoogle Scholar
  18. Kelderman, P., & Osman, A. A. (2007). Effect of redox potential on heavy metal binding forms in polluted canal sediments in Delft (The Netherlands). Water Research, 41(18), 4251–4261.CrossRefGoogle Scholar
  19. Keller, C., & Védy, J. C. (1994). Distribution of copper and cadmium fractions in two forest soils. Journal of Environmental Quality, 23(5), 987–999.CrossRefGoogle Scholar
  20. Langmuir, I. (1916). The constitution and fundamental properties of solids and liquids. Part I. Solids. Journal of the American Chemical Society, 38(11), 2221–2295.CrossRefGoogle Scholar
  21. Li, P., Wang, X., Allinson, G., Li, X., & Xiong, X. (2009). Risk assessment of heavy metals in soil previously irrigated with industrial wastewater in Shenyang, China. Journal of Hazardous Materials, 161(1), 516–521.CrossRefGoogle Scholar
  22. Li, L. Y., Hall, K., Yuan, Y., Gevan, M., McCallum, D., & Chen, M. (2009). Mobility and bioavailability of trace metals in the water–sediment system of the highly urbanized Brunette watershed. Water, Air, and Soil Pollution, 197, 249–266.CrossRefGoogle Scholar
  23. Liu, H., Li, L., & Shan, B. (2008). Fraction distribution and risk assessment of heavy metals in sediments of Moshui Lake. Journal of Environmental Sciences, 20(4), 390–397.Google Scholar
  24. Morera, M. T., Echeverria, J. C., Mazkiaran, C., & Garrido, J. J. (2001). Isotherms and sequential extraction procedures for evaluating sorption and distribution of heavy metals in soils. Environmental Pollution, 113(2), 135–144.CrossRefGoogle Scholar
  25. Morillo, J., Usero, J., & Gracia, I. (2002). Partitioning of metals in sediments from the Odiel River (Spain). Environment International, 28(4), 263–271.CrossRefGoogle Scholar
  26. Müller, G. (1969). Index of geoaccumulation in the sediments of the Rhine River. GeoJournal, 2(3), 108–118.Google Scholar
  27. Nasrabadi, T., NabiBidhendi, Gh, Karbassi, A. R., & Mehrdadi, N. (2010). Partitioning of metals in sediments of the Haraz River (Southern Caspian Sea basin). Environmental Earth Sciences, 59(5), 1111–1117.CrossRefGoogle Scholar
  28. Nemati, K., Abu Bakar, N. K., Abas, M. R., & Sobhanzadeh, E. (2011). Speciation of heavy metals by modified BCR sequential extraction procedure in different depths of sediments from Sungai Buloh, Selangor, Malaysia. Journal of Hazardous Materials, 192(1), 402–410.Google Scholar
  29. Perin, G., Craboledda, L., Lucchese, M., Cirillo, R., Dotta, L., Zanette, M. L., & Orio, A. A. (1985). Heavy metal speciation in the sediments of Northern Adriatic Sea—a new approach for environmental toxicity determination. In T. D. Lakkas (Ed.), Heavy metal in the environment (2:454–456). Edinburgh: CEP Consultants.Google Scholar
  30. Rath, P., Panda, U. C., Bhatta, D., & Sahu, K. C. (2009). Use of sequential leaching, mineralogy, morphology and multivariate statistical technique for quantifying metal pollution in highly polluted aquatic sediments—a case study: Brahmani and Nandira Rivers, India. Journal of Hazardous Materials, 163(2–3), 632–644.CrossRefGoogle Scholar
  31. Saaedi, M. (2003). Concentration, fate and effects of sorption/desorption and flocculation processes of heavy metals on dissolved and particulate phases of Tedjan river, PhD Thesis, University of Tehran.Google Scholar
  32. Saeedi, M., & Karbassi, A. R. (2008). Estuarine capacity in removal of trace metals from contaminated river water, Southern Caspian Sea. Water and Environment Journal, 22(3), 193–198.CrossRefGoogle Scholar
  33. Saeedi, M., Karbassi, A. R., & Mehrdadi, N. (2003). Flocculation of dissolved Mn, Zn, Ni and Cu during the mixing of Tadjan River water with Caspian Sea water. International Journal of Environmental Studies, 60(6), 575–580.CrossRefGoogle Scholar
  34. Saeedi, M., Daneshvar, S., & Karbassi, A. R. (2004). Role of riverine sediment and particulate matter on adsorption of heavy metals. International journal of Environmental Science and Technology, 1(2), 135–140.Google Scholar
  35. Saeedi, M., Hosseinzadeh, M., & Rajabzadeh, M. (2011). Competitive heavy metals adsorption on natural bed sediments of Jajrood River, Iran. Environmental Earth Sciences, 62(3), 519–527.CrossRefGoogle Scholar
  36. Singh, K.P., Mohan, D., Singh, V.K., & Malik, A. (2005). Studies on distribution and fractionation of heavy metals in Gomti river sediments - A tributary of the Ganges, India. Journal of Hydrology, 312(1–4), 14–27.Google Scholar
  37. Shi, B., Allen, H. E., Grassi, M. T., & Huizhong, M. (1998). Modeling copper partitioning in surface waters. Water Research, 32(12), 3756–3764.CrossRefGoogle Scholar
  38. Szefer, P., Kusak, A., Szefer, K., Glasby, G. P., Jankowska, H., Wolowicz, M., & Ali, A. A. (1998). Evaluation of the anthropogenic influx of metallic pollutants into Puck Bay, southern Baltic. Applied Geochemistry, 13(3), 293–304.CrossRefGoogle Scholar
  39. Tessier, A., Campbell, P. G. C., & Bison, M. (1979). Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry, 51(7), 844–851.CrossRefGoogle Scholar
  40. U.S. Environmental Protecting Agency (USEPA) (1996). Test Methods for Evaluating Solid Waste, SW-846.Google Scholar
  41. Veeresh, H., Tripathy, S., Chaudhuri, D., Hart, B. R., & Powell, M. A. (2003). Sorption and distribution of adsorbed metals in three soils of India. Applied Geochemistry, 18(11), 1723–1731.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • M. Saeedi
    • 1
    • 2
  • L. Y. Li
    • 2
  • A. R. Karbassi
    • 3
  • A. J. Zanjani
    • 4
  1. 1.Enviro-hydroinformatics Center of Excellence, School of Civil EngineeringIran University of Science and TechnologyTehranIran
  2. 2.Department of Civil EngineeringThe University of British ColumbiaVancouverCanada
  3. 3.Faculty of EnvironmentUniversity of TehranTehranIran
  4. 4.Department of Water and Environmental Engineering, School of Civil EngineeringIran University of Science and TechnologyTehranIran

Personalised recommendations