Advertisement

Environmental Monitoring and Assessment

, Volume 185, Issue 2, pp 1671–1683 | Cite as

Screening for Stockholm Convention persistent organic pollutants in the Bosna River (Bosnia and Herzogovina)

  • Christopher Harman
  • Merete Grung
  • Jasmina Djedjibegovic
  • Aleksandra Marjanovic
  • Miroslav Sober
  • Kemo Sinanovic
  • Eirik Fjeld
  • Sigurd Rognerud
  • Sissel Brit Ranneklev
  • Thorjørn Larssen
Article

Abstract

The Stockholm Convention, which aspires to manage persistent organic pollutants (POPs) at the international level, was recently ratified in Bosnia and Herzegovina (BiH). Despite this fact, there is in general a paucity of data regarding the levels of POPs in the environment in BiH. In the present study, screening for POPs was conducted in one of the country’s major rivers, the Bosna. A two-pronged approach was applied using passive samplers to detect the freely dissolved and bioavailable concentrations in the water phase and sediment analysis to provide an integrated measure of historical contamination. At several places along the river, the concentrations of polycyclic aromatic hydrocarbons (PAH) were high and exhibited potential for both chronic and acute effects to biota. River water also showed elevated concentrations of PAH, up to 480 ng L−1 near the city of Doboj, and diagnostic ratios suggested combustion sources for the contamination present in both types of sample. The levels of the other contaminants measured—polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs) and polybrominated diphenyl ethers—were generally low in the water phase. However, PCBs and some OCPs were present in river sediments at levels which breach the international criteria and thus suggest potential for ecological damage. Additionally, the levels of heptachlor breached these criteria in many of the sites investigated. This study presents the first screening data for some of these Stockholm Convention relevant compounds in BiH and reveals both low concentrations of some chemical groups, but significant point sources and historic contamination for others.

Keywords

Contaminated sediments SPMDs Passive sampling River monitoring Balkans 

Notes

Acknowledgements

This study was funded by the Norwegian Ministry of Foreign Affairs. Sediments were analysed at the Norwegian Institute for Air Research (NILU). We also thank Espen Lund for technical assistance.

Supplementary material

10661_2012_2659_MOESM1_ESM.pdf (139 kb)
ESM 1 (PDF 138 kb)

References

  1. Adamov, J., Vojinovic-Miloradov, M., Buzarov, D., Jovetic, S., Sudi, J., & Popovic, E. (2003). Distribution of PCBs at different levels of aquatic ecosystem in the Danube River in Vojvodina. Fresenius Environmental Bulletin, 12(2), 117–120.Google Scholar
  2. Augulyte, L., & Bergqvist, P. A. (2007). Estimation of water sampling rates and concentrations of PAHs in a municipal sewage treatment plant using SPMDs with performance reference compounds. Environmental Science and Technology, 41, 5044–5049.CrossRefGoogle Scholar
  3. Bakke, T., Kallqvist, T., Ruus, A., Breedveld, G. D., & Hylland, K. (2010). Development of sediment quality criteria in Norway. Journal of Soils and Sediments, 10(2), 172–178.CrossRefGoogle Scholar
  4. Boehm, P. D., Page, D. S., Brown, J. S., Neff, J. M., & Bence, A. E. (2005). Comparison of mussels and semi-permeable membrane devices as intertidal monitors of polycyclic aromatic hydrocarbons at oil spill sites. Marine Pollution Bulletin, 50(7), 740–750.CrossRefGoogle Scholar
  5. Bogdal, C., Scheringer, M., Schmid, P., Blauenstein, M., Kohler, M., & Hungerbuhler, K. (2010). Levels, fluxes and time trends of persistent organic pollutants in Lake Thun, Switzerland: combining trace analysis and multimedia modelling. Science of the Total Environment, 408(17), 3654–3663.CrossRefGoogle Scholar
  6. Booij, K., & Smedes, F. (2010). An improved method for estimating in situ sampling rates of nonpolar passive samplers. Environmental Science & Technology, 44(17), 6789–6794.CrossRefGoogle Scholar
  7. Booij, K., Sleiderink, H., & Smedes, F. (1998). Calibrating the uptake kinetics of semipermeable membrane devices using exposure standards. Environmental Toxicology and Chemistry, 17(7), 1236–1245.CrossRefGoogle Scholar
  8. CCME (Canadian Council of Ministers of the Environment) (2002). Canadian environmental quality guidelines and summary table. Retrieved from http://www.ccme.ca/publications/ceqg_rcqe.html. Accessed 20 June 2011.
  9. Dalmacija, B., Ivancev-Tumbas, I., Zejak, J., & Djurendic, M. (2003). Case study of petroleum contaminated area of Novi Sad after NATO bombing in Yugoslavia. Soil and Sediment Contamination, 12(4), 591–611.CrossRefGoogle Scholar
  10. Djedjibegovic, J., Marjanovic, A., Sober, M., Skrbo, A., Sinanovic, K., Larssen, T., Grung, M., Fjeld, E., & Rognerud, S. (2010). Levels of persistent organic pollutants in the Neretva River (Bosnia and Herzegovina) determined by deployment of semipermeable membrane devices (SPMD). Journal of Environmental Science and Health Part B-Pesticides Food Contaminants and Agricultural Wastes, 45(2), 128–136.CrossRefGoogle Scholar
  11. Djedjibegovic, J., Larssen, T., Skrbo, A., Marjanovic, A., & Sober, M. (2012). Contents of cadmium, copper, mercury and lead in fish from the Neretva River (Bosnia and Herzegovina) determined by inductively coupled plasma mass spectrometry (ICP-MS). Food Chemistry, 131, 469–476. doi: 10.1016/j.foodchem.2011.09.009.CrossRefGoogle Scholar
  12. Esteve-Turrillas, F. A., Yusa, V., Pastor, A., & de la Guardia, M. (2008). New perspectives in the use of semipermeable membrane devices as passive samplers. Talanta, 74(4), 443–457.CrossRefGoogle Scholar
  13. EU (2006). Proposal for a Directive of the European Parliament and of the Council on Environmental Quality Standards in the field of water policy and amending Directive 2000/60/EC. Commission of the European Communities, COM(2006) 397 final.Google Scholar
  14. Evenset, A., Christensen, G. N., Skotvold, T., Fjeld, E., Schlabach, M., Wartena, E., & Gregor, D. (2003). A comparison of organic contaminants in two high arctic lake ecosystems, Bjørnøya (Bear Island), Norway. Science of the Total Environment, 318(1–3), 125–141.Google Scholar
  15. Franciskovic-Bilinski, S., Bilinski, H., & Sirac, S. (2005). Organic pollutants in stream sediments of Kupa River drainage basin. Fresenius Environmental Bulletin, 14(4), 282–290.Google Scholar
  16. Gourlay-France, C., Lorgeoux, C., & Tusseau-Vuillemin, M. H. (2008). Polycyclic aromatic hydrocarbon sampling in wastewaters using semipermeable membrane devices: accuracy of time-weighted average concentration estimations of truly dissolved compounds. Chemosphere, 73(8), 1194–1200.CrossRefGoogle Scholar
  17. Grabic, R., Jurcikova, J., Tomsejova, S., Ocelka, T., Halirova, J., Hypr, D., & Kodes, V. (2010). Passive sampling methods for monitoring endocrine disruptors in the Svratka and Svitava Rivers in the Czech Republic. Environmental Toxicology and Chemistry, 29(3), 550–555.CrossRefGoogle Scholar
  18. Halse, A. K., Schlabach, M., Eckhardt, S., Sweetman, A., Jones, K. C., & Breivik, K. (2011). Spatial variability of POPs in European background air. Atmospheric Chemistry and Physics, 11, 1549–1564.CrossRefGoogle Scholar
  19. Harman, C., Bøyum, O., Tollefsen, K. E., Thomas, K. V., & Grung, M. (2008). Uptake of some selected aquatic pollutants in semipermeable membrane devices (SPMDs) and the polar organic chemical integrative sampler (POCIS). Journal of Environmental Monitoring, 10(2), 239–247.CrossRefGoogle Scholar
  20. Harman, C., Thomas, K. V., Tollefsen, K. E., Meier, S., Bøyum, O., & Grung, M. (2009). Monitoring the freely dissolved concentrations of polycyclic aromatic hydrocarbons (PAH) and alkylphenols (AP) around a Norwegian oil platform by holistic passive sampling. Marine Pollution Bulletin, 58(11), 1671–1679.CrossRefGoogle Scholar
  21. Harman, C., Brooks, S., Sundt, R. C., Meier, S., & Grung, M. (2011). Field comparison of passive sampling and biological approaches for measuring exposure of PAH and alkylphenols from offshore produced water discharges. Marine Pollution Bulletin, 63(5–12), 141–148.CrossRefGoogle Scholar
  22. Hites, R. K., & Day, H. R. (1992). Unusual persistence of DDT in some western USA soils. Bulletin of Environmental Contamination and Toxicology, 48, 259–264.Google Scholar
  23. Huckins, J. N., Tubergen, M. W., & Manuweera, G. K. (1990). Semipermeable-membrane devices containing model lipid—a new approach to monitoring the bioavailability of lipophilic contaminants and estimating their bioconcentration potential. Chemosphere, 20(5), 533–552.CrossRefGoogle Scholar
  24. Huckins, J. N., Manuweera, G. K., Petty, J. D., Mackay, D., & Lebo, J. A. (1993). Lipid-containing semipermeable-membrane devices for monitoring organic contaminants in water. Environmental Science and Technology, 27(12), 2489–2496.CrossRefGoogle Scholar
  25. Huckins, J. N., Petty, J. D., Lebo, J. A., Almeida, F. V., Booij, K., Alvarez, D. A., Clark, R. C., & Mogensen, B. B. (2002). Development of the permeability/performance reference compound approach for in situ calibration of semipermeable membrane devices. Environmental Science and Technology, 36(1), 85–91.CrossRefGoogle Scholar
  26. Huckins, J. N., Petty, J. D., & Booij, K. (2006). Monitors of organic chemicals in the environment. New York: Springer.Google Scholar
  27. Klanova, J., Kohoutek, J., Kostrhounova, R., & Holoubek, I. (2007). Are the residents of former Yugoslavia still exposed to elevated PCB levels due to the Balkan wars? Part 1: Air sampling in Croatia, Serbia, Bosnia and Herzegovina. Environment International, 33(6), 719–726.CrossRefGoogle Scholar
  28. Komarova, T. V., Bartkow, M. E., Rutishauser, S., Carter, S., & Mueller, J. F. (2009). Evaluation and in situ assessment of photodegradation of polyaromatic hydrocarbons in semipermeable membrane devices deployed in ocean water. Environmental Pollution, 157(3), 731–736.CrossRefGoogle Scholar
  29. Parlar, H., Coelhan, M., & Ekici, P. (2004). Recent findings on polychlorinated biphenyl residues in Eastern European ecosystems. Fresenius Environmental Bulletin, 13(11A), 1079–1089.Google Scholar
  30. Ruzickova, P., Klanova, J., Cupr, P., Lammel, G., & Holoubek, I. (2008). An assessment of air–soil exchange of polychlorinated biphenyls and organochlorine pesticides across Central and Southern Europe. Environmental Science & Technology, 42(1), 179–185.CrossRefGoogle Scholar
  31. Short, J. W., Springman, K. R., Lindeberg, M. R., Holland, L. G., Larsen, M. L., Sloan, C. A., Khan, C., Hodson, P. V., & Rice, S. D. (2008). Semipermeable membrane devices link site-specific contaminants to effects: Part II—A comparison of lingering Exxon Valdez oil with other potential sources of CYP1A inducers in Prince William Sound, Alaska. Marine Environmental Research, 66(5), 487–498.CrossRefGoogle Scholar
  32. Skarek, M., Cupr, P., Bartos, T., Kohoutek, J., Klanova, J., & Holoubek, I. (2007). A combined approach to the evaluation of organic air pollution—a case study of urban air in Sarajevo and Tuzla (Bosnia and Herzegovina). Science of the Total Environment, 384(1–3), 182–193.CrossRefGoogle Scholar
  33. Skoulikidis, N. T. (2009). The environmental state of rivers in the Balkans—a review within the DPSIR framework. Science of the Total Environment, 407, 2501–2516.CrossRefGoogle Scholar
  34. Terzic, S., Senta, I., Ahel, M., Gros, M., Petrovic, M., Barcelo, D., Muller, J., Knepper, T., Marti, I., Ventura, F., Jovanic, P., & Jabucar, D. (2008). Occurrence and fate of emerging wastewater contaminants in Western Balkan Region. Science of the Total Environment, 399(1–3), 66–77.CrossRefGoogle Scholar
  35. Turk, M., Jaksic, J., Miloradov, M. V., & Klanova, J. (2007). Post-war levels of persistent organic pollutants (POPs) in air from Serbia determined by active and passive sampling methods. Environmental Chemistry Letters, 5(3), 109–113.CrossRefGoogle Scholar
  36. UNEP (2001). Stockholm Convention on persistent organic pollutants, UNEP/POPs/CONF/PM/Rev.1. United Nations Environment Programme, Stockholm Sweden.Google Scholar
  37. Vojinovic-Miloradov, M., Buzarov, D., Adamov, J., Simic, S., & Popovic, E. (1996). Determination of polychlorinated biphenyls and polyaromatic hydrocarbons in frog liver. Water Science and Technology, 34(7–8), 153–156.CrossRefGoogle Scholar
  38. Vrana, B., Paschke, A., & Popp, P. (2001). Polyaromatic hydrocarbon concentrations and patterns in sediments and surface water of the Mansfeld region, Saxony-Anhalt, Germany. Journal of Environmental Monitoring, 3(6), 602–609.CrossRefGoogle Scholar
  39. Wang, H., He, M., Lin, C., Quan, X., Guo, W., & Yang, Z. (2007). Monitoring and assessment of persistent organochlorine residues in sediments from the Daliaohe River watershed, northeast of China. Environmental Contamination and Assessment, 133, 231–242.CrossRefGoogle Scholar
  40. Wang, J. X., Bi, Y., Pfister, G., Henkelmann, B., Zhu, K. X., & Schramm, K. W. (2009). Determination of PAH, PCB, and OCP in water from the Three Gorges Reservoir accumulated by semipermeable membrane devices (SPMD). Chemosphere, 75(8), 1119–1127.CrossRefGoogle Scholar
  41. Wurl, O., & Obbard, J. P. (2005). Organochlorine pesticides, polychlorinated biphenyls and polybrominated diphenyl ethers in Singapore's coastal marine sediments. Chemosphere, 58, 925–933.CrossRefGoogle Scholar
  42. Yunker, M. B., Macdonald, R. W., Vingarzan, R., Mitchell, R. H., Goyette, D., & Syvestre, S. (2002). PAHs in the Fraser River basin: a critical appraisal of PAH ratios as indicators of PAH source and composition. Organic Geochemistry, 33(4), 489–515.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Christopher Harman
    • 1
  • Merete Grung
    • 1
  • Jasmina Djedjibegovic
    • 2
  • Aleksandra Marjanovic
    • 2
  • Miroslav Sober
    • 2
  • Kemo Sinanovic
    • 2
  • Eirik Fjeld
    • 1
  • Sigurd Rognerud
    • 1
  • Sissel Brit Ranneklev
    • 1
  • Thorjørn Larssen
    • 1
  1. 1.Norwegian Institute for Water Research (NIVA)Oslo Centre for Interdisciplinary Environmental and Social Research (CIENS)OsloNorway
  2. 2.Faculty of PharmacyUniversity of SarajevoSarajevoBosnia and Herzegovina

Personalised recommendations