Environmental Monitoring and Assessment

, Volume 185, Issue 2, pp 1567–1576 | Cite as

Spatial scales of variation in lichens: implications for sampling design in biomonitoring surveys

  • Paolo Giordani
  • Giorgio Brunialti
  • Luisa Frati
  • Guido Incerti
  • Luca Ianesch
  • Emanuele Vallone
  • Giovanni Bacaro
  • Simona Maccherini


The variability of biological data is a main constraint affecting the quality and reliability of lichen biomonitoring surveys for estimation of the effects of atmospheric pollution. Although most epiphytic lichen bioindication surveys focus on between-site differences at the landscape level, associated with the large scale effects of atmospheric pollution, current protocols are based on multilevel sampling, thus adding further sources of variation and affecting the error budget. We test the hypothesis that assemblages of lichen communities vary at each spatial scale examined, in order to determine what scales should be included in future monitoring studies. We compared four sites in Italy, along gradients of atmospheric pollution and climate, to test the partitioning of the variance components of lichen diversity across spatial scales (from trunks to landscapes). Despite environmental heterogeneity, we observed comparable spatial variance. However, residuals often overcame between-plot variability, leading to biased estimation of atmospheric pollution effects.


Lichen diversity Air pollution Sampling design PERMANOVA Variance components 



This study was partially funded by CESI S.p.A. and Edipower S.p.A. We are grateful to Dr. Maurizio Perotti and Dr. Francesca Deperis for technical support and data management.


  1. Anderson, M. J. (2001a). A new method for non-parametric multivariate analysis of variance. Austral Ecology, 26, 32–46.Google Scholar
  2. Anderson, M. J. (2001b). Permutation tests for univariate or multivariate analysis of variance and regression. Canadian Journal of Fisheries and Aquatic Sciences, 58, 626–639.CrossRefGoogle Scholar
  3. Anderson, M. J., & ter Braak, C. J. F. (2003). Permutation tests for multi-factorial analysis of variance. Journal of Statistical Computation and Simulation, 73, 85–113.CrossRefGoogle Scholar
  4. ANPA. (2001). I.B.L.: Indice di Biodiversità Lichenica. Serie Manuali e Linee Guida, 2/2001. Roma: ANPA.Google Scholar
  5. Asta, J., Erhardt, W., Ferretti, M., Fornasier, F., Kirschbaum, U., Nimis, P. L., et al. (2002). Mapping lichen diversity as an indicator of environmental quality. In P. L. Nimis, C. Scheidegger, & P. Wolseley (Eds.), Monitoring with lichens—monitoring lichens (pp. 273–279). Dordrecht: Kluwer.CrossRefGoogle Scholar
  6. Balata, D., Bertocci, I., Piazzi, L., & Nesti, U. (2008). Comparison between epiphyte assemblages of leaves and rhizomes of the seagrass Posidonia oceanica subjected to different levels of anthropogenic eutrophication. Estuarine, Coastal and Shelf Science, 79, 533–540.CrossRefGoogle Scholar
  7. Balestri, E., Cinelli, F. & Lardicci, C. (2003). Spatial variation in Poseidonia oceanica structural, morphological and dynamic features in a northwestern Mediterranean coastal area: a multi-scale analysis. Marine Ecology Progress Series, 250, 51–60.Google Scholar
  8. Botkin, D. B. (1990). Discordant harmonies: a new ecology for the twenty-first century. Oxford: Oxford University Press.Google Scholar
  9. Branquinho, C., Gaio-Oliveira, G., Augusto, S., Pinho, P., Maguas, C., & Correia, O. (2008). Biomonitoring spatial and temporal impact of atmospheric dust from a cement industry. Environmental Pollution, 151, 292–299.CrossRefGoogle Scholar
  10. Brunialti, G., & Giordani, P. (2003). Variability of lichen diversity in a climatically heterogeneous area (Liguria, NW Italy). The Lichenologist, 35, 55–69.CrossRefGoogle Scholar
  11. Brunialti, G., Frati, L., Incerti, G., Rizzi, G., Vinci, M., & Giordani, P. (2009). Lichen biomonitoring of air pollution: issues for applications in complex environments. In G. C. Romano & A. G. Conti (Eds.), Air quality in the 21st century (pp. 211–259). Hauppauge: Nova.Google Scholar
  12. Cao, Y., Bark, A. W., & Williams, P. (1997). A comparison of clustering methods for river benthic community analysis. Hydrobiologia, 347, 25–40.CrossRefGoogle Scholar
  13. Cristofolini, F., Giordani, P., Gottardini, E., & Modenesi, P. (2008). The response of epiphytic lichens to air pollution and subsets of ecological predictors: a case study from the Italian Prealps. Environmental Pollution, 151, 308–317.CrossRefGoogle Scholar
  14. Davies, L., Bates, J. W., Bell, J. N. B., James, P. W., & Purvis, O. W. (2007). Diversity and sensitivity of epiphytes to oxides of nitrogen in London. Environmental Pollution, 146, 299–310.CrossRefGoogle Scholar
  15. Dungan, J. L., Perry, J. N., Dale, M. R. T., Legendre, P., Citron-Pousty, S., Fortin, M. J., et al. (2002). A balanced view of scale in spatial statistical analysis. Ecography, 25, 626–640.CrossRefGoogle Scholar
  16. Ellis, C. J. (2011). Lichen epiphyte diversity: a species, community and trait-based review. Perspectives in Plant Ecology, Evolution and Systematics. doi: 10.1016/j.ppees.2011.10.001
  17. Ferretti, M., & Erhardt, W. (2002). Key issues in designing biomonitoring programs. Monitoring scenarios, sampling strategies and quality assurance. In P. L. Nimis, C. Scheidegger, & P. Wolseley (Eds.), Monitoring with lichens—monitoring lichens (pp. 111–139). London: Kluwer.CrossRefGoogle Scholar
  18. Ferretti, M., Brambilla, E., Brunialti, G., Fornasier, F., Mazzali, C., Giordani, P., et al. (2004). Reliability of different sampling densities for estimating and mapping lichen diversity in biomonitoring studies. Environmental Pollution, 127, 249–256.CrossRefGoogle Scholar
  19. Frati, L., & Brunialti, G. (2006). Long-term biomonitoring with lichens: comparing data from different sampling procedures. Environmental Monitoring and Assessment, 119, 391–404.CrossRefGoogle Scholar
  20. Frati, L., Santoni, S., Nicolardi, V., Gaggi, C., Brunialti, G., Guttova, A., et al. (2007). Lichen biomonitoring of ammonia emission and nitrogen deposition around a pig stockfarm. Environmental Pollution, 146, 311–316.CrossRefGoogle Scholar
  21. Gaston, K. J. (2000). Global patterns in biodiversity. Nature, 405, 220–227.CrossRefGoogle Scholar
  22. Geiser, L. H., & Neitlich, P. N. (2007). Pollution and climate gradients in western Oregon and Washington indicated by epiphytic macrolichens. Environmental Pollution, 145, 203–218.CrossRefGoogle Scholar
  23. Giordani, P. (2006). Variables influencing the distribution of epiphytic lichens in heterogeneous areas: a case study for Liguria, NW Italy. Journal of Vegetation Science, 17, 195–206.CrossRefGoogle Scholar
  24. Giordani, P. (2012). Assessing the effects of forest management on epiphytic lichens in coppiced forests using different indicators. Plant Biosystems. doi:10.1080/11263504.2011.654136
  25. Giordani, P., Brunialti, G., & Alleteo, D. (2002). Effects of atmospheric pollution on lichen biodiversity (LB) in a Mediterranean region (Liguria, northwest Italy). Environmental Pollution, 118, 53–64.CrossRefGoogle Scholar
  26. Giordani, P., Calatayud, V., Stofer, S., Granke, O. (2011). Epiphytic lichen diversity in relation to atmospheric deposition. In Fischer R, Lorenz M (eds.). 2011: forest condition in Europe, 2011 Technical Report of ICP Forests and FutMon. Work Report of the Institute for World Forestry 2011/1. ICP Forests, Hamburg, 2011, 212 ppGoogle Scholar
  27. Gunnar, J. B., & Moen, J. (1998). Patterns in species associations in plant communities: the importance of scale. Journal of Vegetation Science, 9, 327–332.Google Scholar
  28. ISPRA (2008). BRACE. Dati e Metadati di Qualità dell’aria. ISPRAGoogle Scholar
  29. Jovan, S., & McCune, B. (2005). Air-quality bioindication in the greater central valley of California, with epiphytic macrolichen communities. Ecological Applications, 15, 1712–1726.CrossRefGoogle Scholar
  30. Jovan, S., & McCune, B. (2006). Using epiphytic macrolichen communities for biomonitoring ammonia in forests of the greater Sierra Nevada, California. Water, Air, and Soil Pollution, 170, 69–93.CrossRefGoogle Scholar
  31. Levin, S. A. (1992). The problem of pattern and scale in ecology. Ecology, 73, 1943–1967.CrossRefGoogle Scholar
  32. McArdle, B. H., & Anderson, M. J. (2001). Fitting multivariate models to semi-metric distances: a comment on distance-based redundancy analysis. Ecology, 82, 290–297.CrossRefGoogle Scholar
  33. Nascimbene, J., Nimis, P. L., & Marini, L. (2007). Testing indicators of epiphytic lichen diversity: a case study in N Italy. Biodiversity and Conservation, 16, 3377–3386.CrossRefGoogle Scholar
  34. Nascimbene, J., Marini, L., Bacaro, G., & Nimis, P. L. (2010). Effect of reduction in sampling effort for monitoring epiphytic lichen diversity in forests. Community Ecology, 11, 250–256.CrossRefGoogle Scholar
  35. Nimis, P. L. & Martellos, S. (2008). ITALIC—the information system on Italian Lichens. Version 4.0.Google Scholar
  36. Nimis, P. L., Scheidegger, C., & Wolseley, P. A. (2002). Monitoring with lichens—monitoring lichens. Dordrecht: Kluwer. Published in association with the NATO Scientific Affairs Division.CrossRefGoogle Scholar
  37. Palmer, M. W. (1990). Spatial scale and patterns of vegetation, flora and species richness in hardwood forests of the north Carolina Piedmont. Coenoses, 5, 89–96.Google Scholar
  38. Pinho, P., Augusto, S., Branquinho, C., Bio, A., Pereira, M. J., Soares, A., & Catarino, F. (2004). Mapping lichen diversity as a first step for air quality assessment. Journal of Atmospheric Chemistry, 49, 377–389.CrossRefGoogle Scholar
  39. Pinho, P., Augusto, S., Maguas, C., Pereira, M. J., Soares, A., & Branquinho, C. (2008). Impact of neighbourhood land-cover in epiphytic lichen diversity: analysis of multiple factors working at different spatial scales. Environmental Pollution, 151, 414–422.CrossRefGoogle Scholar
  40. Pirintsos, S. A., Diamantopoulos, J., & Stamou, G. P. (1993). Analysis of the vertical distribution of epiphytic lichens on Pinus nigra. Vegetatio, 109, 63–70.CrossRefGoogle Scholar
  41. Pirintsos, S. A., Diamantopoulos, J., & Stamou, G. P. (1995). Analysis of the distribution of epiphytic lichens within homogeneous Fagus sylvatica stands along an altitudinal gradient (Mount Olympos, Greece). Vegetatio, 116, 33–40.Google Scholar
  42. Purvis, A., & Hector, A. (2000). Getting the measure of biodiversity. Nature, 405, 212–219.CrossRefGoogle Scholar
  43. Purvis, O. W., Chimonides, P. J., Joness, G. C., Mikhailova, I. N., Spiro, B., Weiss, D. J., et al. (2004). Lichen biomonitoring near Karabash Smelter Town, Ural Mountains, Russia, one of the most polluted areas in the world. Proceedings of the Royal Society B: Biological Sciences, 271, 221–226.CrossRefGoogle Scholar
  44. Saipunkaew, W., Wolseley, P. A., Chimonides, P. J., & Boonpragob, K. (2007). Epiphytic macrolichens as indicators of environmental alteration in northern Thailand. Environmental Pollution, 146, 366–374.CrossRefGoogle Scholar
  45. Seaward, M. R. D., & Letrouit-Galinou, M. A. (1991). Lichen recolonization of trees in the Jardin du Luxembourg, Paris. The Lichenologist, 23, 181–186.CrossRefGoogle Scholar
  46. Stofer, S., Bergamini, A., Aragon, G., Carvalho, P., Coppins, B. J., Davey, S., et al. (2006). Species richness of lichen functional groups in relation to land use intensity. The Lichenologist, 38, 331–353.CrossRefGoogle Scholar
  47. Tarrassón, L. & Nyíri, À. (Eds.) (2008). Transboundary Acidification, Eutrophication and Ground Level Ozone. in Europe in 2006. EMEP Status Report 2008/1. ISSN 1504-6109.Google Scholar
  48. Underwood, A. J., & Chapman, M. G. (1996). Scales of spatial patterns of distribution of intertidal invertebrates. Oecologia, 107, 212–224.CrossRefGoogle Scholar
  49. Underwood, A.J., Chapman, M.G. & Connell, S.D. (2000). Observations in ecology: you can’t make progress on processes without understanding the patterns. Journal of Experimental Marine Biology and Ecology, 250, 97–115.Google Scholar
  50. Van Dobben, H. F., & Ter Braak, C. J. F. (1998). Effects of atmospheric NH3 on epiphytic lichens in the Netherlands: the pitfalls of biological monitoring. Atmospheric Environment, 32, 551–557.CrossRefGoogle Scholar
  51. van Dobben, H. F., Wolterbeek, H. T., Wamelink, G. W. W., & Ter Braak, C. J. F. (2001). Relationship between epiphytic lichens, trace elements and gaseous atmospheric pollutants. Environmental Pollution, 112, 163–169.CrossRefGoogle Scholar
  52. van Herk, C. M. (1999). Mapping of ammonia pollution with epiphytic lichens in The Netherlands. The Lichenologist, 31, 9–20.CrossRefGoogle Scholar
  53. van Herk, C. M., Mathijssen-Spiekman, A. M. E., & de Zwart, D. (2003). Long distance nitrogen air pollution effects on lichens in Europe. The Lichenologist, 35, 347–359.CrossRefGoogle Scholar
  54. Will-Wolf, S., Geiser, L. H., Neitlich, P., & Reis, A. H. (2006). Forest lichen communities and environment—how consistent are relationships across scales? Journal of Vegetation Science, 17, 171–184.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Paolo Giordani
    • 1
  • Giorgio Brunialti
    • 2
  • Luisa Frati
    • 2
  • Guido Incerti
    • 3
  • Luca Ianesch
    • 4
  • Emanuele Vallone
    • 2
  • Giovanni Bacaro
    • 2
    • 5
  • Simona Maccherini
    • 2
    • 5
  1. 1.DIP.TE.RIS.University of GenovaGenoaItaly
  2. 2.TerraData EnvironmetricsSpin Off University of SienaMonterotondo MarittimoItaly
  3. 3.Department of Life ScienceUniversity of TriesteTriesteItaly
  4. 4.Biosphaera s.a.s.TriesteItaly
  5. 5.BIOCONNET, Biodiversity and Conservation Network, Department of Environmental Science “G. Sarfatti”University of SienaSienaItaly

Personalised recommendations