Environmental Monitoring and Assessment

, Volume 185, Issue 2, pp 1071–1085 | Cite as

Comparative bioaccumulation of trace metals using six filter feeder organisms in a coastal lagoon ecosystem (of the central-east Gulf of California)

  • M. E. Jara-Marini
  • J. N. Tapia-Alcaraz
  • J. A. Dumer-Gutiérrez
  • L. García-Rico
  • J. García-Hernández
  • F. Páez-Osuna


The Tobari Lagoon, located in the central-east coast of the Gulf of California, receives effluents from the Yaqui Valley, one of the most extensive agricultural areas of México. The Tobari Lagoon also receives effluents from nearby shrimp farms and untreated municipal sewage. Surface sediment samples and six different species of filter feeders (Crassostrea corteziensis, Crassostrea gigas, Chione gnidia, Anadara tuberculosa, Chione fluctifraga, and Fistulobalanus dentivarians) were collected during the dry and the rainy seasons and analyzed to determine concentrations of cadmium (Cd), copper (Cu), mercury (Hg), lead (Pb), and zinc (Zn). Seasonal variations in metal concentrations in sediment were evident, especially for Cd, Cu, Hg, and Zn. The total and bioavailable concentrations of the five metals are not elevated in comparison to other areas around the world. The percentages of bioavailable respect to total concentrations of the metals varied from 0.6 % in Hg to 50.2 % for Cu. In the organisms, Hg showed the lowest concentrations (ranged from 0.22 to 0.65 μg/g) while Zn showed the highest (ranged from 36.6 to 1,702 μg/g). Linear correlations between the levels of Cu, Pb, and Zn in the soft tissues of C. fluctifraga and C. gnidia, and A. tuberculosa and C. gnidia were found. Seasonal and interspecies variations in the metal levels in filter feeders were found; F. dentivarians, C. corteziensis, and C. gigas exhibited the highest levels, could be used as biomonitors of metals contamination in this area.


Coastal lagoon Heavy metals Bioaccumulation Bioavailable fraction Biomonitor organism Filter feeders Gulf of California 



This study was supported by a research grant from the Consejo Nacional de Ciencia y Tecnología de México (Project CONACYT CB-2008-C01-103522). The authors would like to thank R. Valenzuela-Miranda, K. Martínez-Robinson, G. Leyva-García, D. Aguilera-Márquez, and C. Ramírez-Jauregui for their technical support in sample preparation, analysis, and help with bibliography.


  1. Berthelin, C., Kellner, K., & Mathieu, M. (2000). Storage metabolism in the Pacific oyster (Crassostrea gigas) in relation to summer mortalities and reproductive cycle (West Coast of France). Comparative Biochemistry and Physiology. B, 125, 359–369.CrossRefGoogle Scholar
  2. Brown, G. E., Foster, A. L., & Ostergren, J. D. (1999). Mineral surfaces and bioavailability of heavy metals: a molecular-scale perspective. Proceedings of the National Academy of Sciences United States of America, 96, 3388–3395.CrossRefGoogle Scholar
  3. Cadena-Cárdenas, L., Méndez-Rodríguez, L., Zenteno-Savín, T., García-Hernández, J., & Acosta-Vargas, B. (2009). Heavy metal levels in marine mollusks from areas with, or without, mining activities along the Gulf of California, Mexico. Archives of Environment Contamination and Toxicology, 57, 96–102.CrossRefGoogle Scholar
  4. Cao, Z. H., & Hu, Z. Y. (2000). Copper contamination in paddy soils irrigated with wastewater. Chemosphere, 41, 3–6.CrossRefGoogle Scholar
  5. Clemente, R., & Bernal, M. P. (2006). Fractionation of heavy metals and distribution of organic carbon in two contaminated soils amended with humic acids. Chemosphere, 64, 1264–1273.CrossRefGoogle Scholar
  6. Dehn, L. A., Follmann, E. H., Thomas, D. L., Sheffield, G. G., Rosa, C., Duffy, L. K., & O’Hara, T. M. (2006). Trophic relationships in an Arctic food web and implications for trace metal transfer. Science of the Total Environment, 362, 103–123.CrossRefGoogle Scholar
  7. Delgadillo-Hinojosa, F., Macías-Zamora, J. V., Segovia-Zavala, J. A., & Torres-Valdés, S. (2001). Cadmium enrichment in the Gulf of California. Marine Chemistry, 75, 109–122.CrossRefGoogle Scholar
  8. Fitzgerald, W. F., & Lamborg, C. H. (2005). Geochemistry of mercury in environment. In S. Lollar, H. D. Holland, & K. K. Turekian (Eds.), Environmental geochemistry. Treatise of geochemistry (pp. 108–148). Oxford: Elsevier.Google Scholar
  9. Flores-Verdugo, F. (1990). Algunos aspectos sobre la ecología, uso e importancia de los ecosistemas de manglar. In J. Rosa-Vélez & F. González-Farias (Eds.), Temas de Oceanografía Biológica en México (pp. 21–56). Ensenada: Universidad Autónoma de Baja California.Google Scholar
  10. Frías-Espericueta, M. G., Osuna-López, J. I., & Páez-Osuna, F. (1999). Gonadal maturation and trace metals in the mangrove oyster Crassostrea corteziensis: seasonal variation. The Science of the Total Environment, 231(2–3), 115–123.CrossRefGoogle Scholar
  11. Frías-Espericueta, M. G., Osuna-López, J. I., Voltolina, D., López-López, G., Izaguirre-Fierro, G., & Muy-Rangel, M. D. (2008). The metal content of bivalve molluscs of a coastal lagoon of NW Mexico. Bulletin of Environmental Contamination and Toxicology, 80, 90–92.CrossRefGoogle Scholar
  12. García-Hernández, J. (2004). Diagnostico del estado de salud de los ecosistemas del sur de Sonora. Diagnóstico sur de Sonora-CIAD-WWF. Technical report.Google Scholar
  13. Glantz, S. A. (2002). Alternatives to analysis of variance and the t-test based in ranks. In: Primer of biostatistics (pp. 351–385). McGraw-Hill, USA.Google Scholar
  14. Green-Ruíz, C., & Páez-Osuna, F. (2001). Heavy metal anomalies in lagoon sediments related to intensive agriculture in Altata-Ensenada del Pabellón coastal system (SE Gulf of California). Environmental International, 26, 265–273.CrossRefGoogle Scholar
  15. Green-Ruiz, C., & Páez-Osuna, F. (2003). Heavy metal distribution in surface sediments from a subtropical coastal lagoon system associated with an agricultural basin. Bulletin of Environmental Contamination and Toxicology, 71, 52–59.CrossRefGoogle Scholar
  16. Green-Ruiz, C., Ruelas-Inzunza, J., & Páez-Osuna, F. (2005). Mercury in surface sediments and benthic organisms from Guaymas Bay, east coast of the Gulf of California. Environmental Geochemistry and Health, 27, 321–329.CrossRefGoogle Scholar
  17. Hobson, K. A., & Welch, H. E. (1992). Determination of trophic relationship within a high arctic marine food web using δ13C and δ15N analysis. Marine Ecology Progress Series, 84, 9–18.CrossRefGoogle Scholar
  18. Huerta-Diaz, M. A., & Morse, J. W. (1990). A quantitative method for determination of trace metal concentrations in sedimentary pyrite. Marine Chemistry, 29, 119–144.CrossRefGoogle Scholar
  19. Jara-Marini, M. E., Soto-Jiménez, M. F., & Páez-Osuna, F. (2009). Trophic relationships and transference of cadmium, copper, lead and zinc in a subtropical coastal lagoon food web from SE Gulf of California. Chemosphere, 77, 1366–1373.CrossRefGoogle Scholar
  20. Jara-Marini, M. E., Soto-Jiménez, M. F., & Páez-Osuna, F. (2010). Mercury transfer in a subtropical coastal lagoon food web (SE Gulf of California) under two contrasting climatic conditions. Environmental Toxicology. doi: 10.1002/tox.
  21. Komárek, M., & Zeman, J. (2004). Dynamics of Cu, Zn, Cd, and Hg release from sediments at surface conditions. Bulletin of Geosciences, 79, 99–106.Google Scholar
  22. Lankford, R. R. (1977). Coastal lagoons of Mexico, their origin and classification. In M. Wiley (Ed.), Estuarine processes (pp. 174–182). New York: Academic.Google Scholar
  23. Loring, D. H., & Rantala, R. T. T. (1992). Manual for the geochemical analysis of marine sediments and suspended particulate matter. Earth Sciences Review, 32(4), 235–283.CrossRefGoogle Scholar
  24. Luoma, S. N., & Rainbow, P. (2005). Why is metal bioaccumulation so variable? Biodynamics as a unifying concept. Environmental Science and Technology, 39(7), 1921–1931.CrossRefGoogle Scholar
  25. Méndez, L., Salas-Flores, L. M., Arreola-Lizarraga, A., Alvarez-Castañeda, S. T., & Acosta, B. (2002). Heavy metals in clams from Guaymas Bay, Mexico. Bulletin of Environmental Contamination and Toxicology, 68, 217–223.CrossRefGoogle Scholar
  26. Méndez, L., Palacios, E., Acosta, B., Monsalvo-Spencer, P., & Alvarez-Castañeda, T. (2006). Heavy metals in the clam Megapitaria squalida collected from wild and phosphorite mine-impacted sites in Baja California, Mexico. Considerations for human health effects. Biological Trace Element Research, 110, 275–287.CrossRefGoogle Scholar
  27. NCSS (2007). Statistical system for windows. Version 6.0. In J. L. Hintze (Ed.), Number Cruncher Statistical System (pp. 1141). Utah USA.Google Scholar
  28. Páez-Osuna, F., Osuna-López, J. I., Izaguirre-Fierro, G., & Zazueta-Padilla, H. M. (1993). Heavy metals in clams from subtropical coastal lagoon associated with agricultural drainage basin. Bulletin of Environmental Contamination and Toxicology, 50(915), 921.Google Scholar
  29. Páez-Osuna, F., Ruiz-Fernández, A. C., Botello, A. V., Ponce-Vélez, G., Osuna-López, J. I., Frías-Espericueta, M. G., López-López, G., & Zazueta-Padilla, H. M. (2002). Concentrations of selected trace metals (Cu, Pb, Zn), organochlorines (PCBs, HCB) and total PAHs in mangrove oysters from the Pacific Coast of Mexico: an overview. Marine Pollution Bulletin, 44, 1296–1313.CrossRefGoogle Scholar
  30. Phillips, D. J. H., & Rainbow, P. S. (1994). Biomonitoring of trace aquatic contaminants (p. 371). London: Elsevier.Google Scholar
  31. Rauret, G., Rubio, R., López-Sánchez, J. F., & Cassasas, E. (1988). Determination and speciation of cooper of a river Mediterranean (River Tenes, Catalonia, Spain). Water Research, 22(4), 449–455.CrossRefGoogle Scholar
  32. Ruelas-Inzunza, J. R., & Páez-Osuna, F. (2000). Comparative bioavailability of trace metals using three filter feeder organisms in a subtropical coastal environment (Southeast Gulf of California). Environmental Pollution, 107, 437–444.CrossRefGoogle Scholar
  33. Ruelas-Inzunza, J. R., & Páez-Osuna, F. (2008). Trophic Distribution of Cd, Pb, and Zn in a food web from Altata-Ensenada del Pabellón subtropical lagoon, SE Gulf of California. Archives of Environmental Contamination and Toxicology, 54, 584–596.CrossRefGoogle Scholar
  34. SAGARPA (2010). Secretaria de Agricultura, Ganadería, Desarrollo Rural, Pesca y Agricultura. http://www.sagarpa.gob.mx/conapesca /planeacion/anuario2002/.
  35. Sañudo-Wilhelmy, S. A., & Flegal, A. R. (1991). Trace element distributions in coastal waters along the US-Mexican boundary: relative contribution of natural processes vs. anthrogenic inputs. Marine Chemistry, 33, 371–392.CrossRefGoogle Scholar
  36. Segovia-Zavala, J. A., Delgadillo-Hinojosa, F., & Alvarez-Borrego, S. (1998). Cadmium in the coastal upwelling area adjacent to the California Mexico border. Estuarine, Coastal and Shelf Science, 46, 475–481.CrossRefGoogle Scholar
  37. Segovia-Zavala, J. A., Delgadillo-Hinojosa, F., Muñoz-Barbosa, A., Gutiérrez-Galindo, E. A., & Vidal-Talamantes, R. (2004). Cadmium and silver in Mytilus californianus transplanted to an anthropogenic influenced and coastal upwelling areas in the Mexican Northeastern Pacific. Marine Pollution Bulletin, 48, 458–464.CrossRefGoogle Scholar
  38. Soto-Jiménez, M. F., & Páez-Osuna, F. (2001). Distribution and normalization of heavy metal concentrations in mangrove and lagoonal sediments from Mazatlán harbor (SE Gulf of California). Estuarine, Coastal and Shelf Science, 53(3), 259–274.CrossRefGoogle Scholar
  39. Soto-Jiménez, M. F., Hibdon, S. A., Rankin, C. W., Agarawl, J., Ruíz-Fernández, A. C., Páez-Osuna, F., & Flegal, A. R. (2006). Chronicling a century of lead pollution in Mexico: stable lead isotopic composition analyses of dated sediment cores. Environmental Science and Technolopgy, 40(3), 764–770.CrossRefGoogle Scholar
  40. Van Geen, A., & Husby, D. M. (1996). Cadmium in the California current system: tracer of past and present upwelling. Journal of Geophysical Research, 101, 3489–3587.CrossRefGoogle Scholar
  41. Wang, W. X. (2002). Interactions of trace metals and different marine food chains. Marine Ecology Progress Series, 243, 295–309.CrossRefGoogle Scholar
  42. Wang, W. X., & Rainbow, P. S. (2005). Influence of metal exposure history on trace metal uptake and accumulation by marine invertebrates. Ecotoxicology and Environmental Safety, 61, 145–159.CrossRefGoogle Scholar
  43. Wang, F., Chen, J. S., & Forsling, W. (1997). Modeling sorption of trace metals on natural sediments by surface complexation model. Environmental Science and Technology, 31, 448–453.CrossRefGoogle Scholar
  44. Yuan, H. Z., Shen, J., Liu, E. F., Wang, J. J., & Meng, X. H. (2011). Assessment of nutrients and heavy metals enrichment in surface sediments from Taihu Lake, a eutrophic shallow lake in China. Environmental Geochemistry and Health, 33, 67–81.CrossRefGoogle Scholar
  45. Zar, J. (1999). Biostatistical Analysis (p. 660). New Jersey: Prentice-Hall.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • M. E. Jara-Marini
    • 1
  • J. N. Tapia-Alcaraz
    • 2
  • J. A. Dumer-Gutiérrez
    • 2
  • L. García-Rico
    • 1
  • J. García-Hernández
    • 3
  • F. Páez-Osuna
    • 4
  1. 1.Centro de Investigación en Alimentación y Desarrollo, A.C.HermosilloMexico
  2. 2.Coordinación de Programas Académicos del Centro de Investigación en Alimentación y Desarrollo, A.C.HermosilloMexico
  3. 3.Centro de Investigación en Alimentación y Desarrollo, A.C.GuaymasMexico
  4. 4.Unidad Académica Mazatlán, Instituto de Ciencias del Mar y LimnologíaUniversidad Nacional Autónoma de MéxicoMazatlánMexico

Personalised recommendations