Advertisement

Environmental Monitoring and Assessment

, Volume 185, Issue 1, pp 969–981 | Cite as

The Duero Diatom Index (DDI) for river water quality assessment in NW Spain: design and validation

  • Irene Álvarez-Blanco
  • Saúl Blanco
  • Cristina Cejudo-Figueiras
  • Eloy Bécares
Article

Abstract

Diatom indices developed in certain geographic regions are frequently used elsewhere, despite the strong evidence that such metrics are less useful when applied in regions other than that where species–environment relationships were originally assessed, showing that species have particular autoecological requirements in different geographic areas. The goal of this study was to develop a new metric, the Duero Diatom Index (DDI), aimed at monitoring water quality in Duero basin watercourses (NW Spain). In summer 2008 and 2009, a total of 355 epilithic diatom samples were collected following standard protocols. The 2008 samples were used to develop the DDI, whereas the samples collected during 2009 were used in the index testing. Weighted averages method was used to derive the autoecological profiles of diatoms with respect to pH, conductivity, biological oxygen demand, ammonia, nitrates, and phosphates. The optimum and tolerance values for the measured environmental variables were determined for 137 taxa with abundances and frequencies of occurrence above 1 %, and subsequent trophic indicator and sensitivity values were defined for the DDI. The correlation between the observed and the diatom-inferred nutrient concentrations was highest for phosphates (ρ S = 0.72). Significant statistical relationship were observed between DDI values and the chemistry-based General Quality Index values (p = 0.006) and the specific pollution index (SPI) diatom metric (p = 0.04). DDI has demonstrated a better correlation with water chemistry than SPI diatom metric.

Keywords

Biomonitoring Metrics Phytobenthos DDI Duero Diatom Index Autoecology 

Notes

Acknowledgments

We would like to thank the Duero Basin Authority (CHD) for their financial support and use of data and Mr. G. Richters for your kindly revised our English. The Associate Editor and two anonymous referees are thanked for their valuable comments on the manuscript.

References

  1. AENOR (Spanish Association for Standardization and Certification). (2004). Norma española UNE-EN 13946 Calidad del agua. Guía para el muestreo en rutina y pretratamiento de diatomeas bentónicas de ríos. Madrid: AENOR.Google Scholar
  2. AENOR (Spanish Association for Standardization and Certification). (2005). Norma española UNE-EN 14407 Calidad del agua. Guía para la identificación recuento e interpretación de muestras de diatomeas bentónicas de ríos. Madrid: AENOR.Google Scholar
  3. Almeida, S. F. P. (2001). Use of diatoms for freshwater quality evaluation in Portugal. Limnetica, 20, 205–213.Google Scholar
  4. Álvarez-Blanco, I., Cejudo-Figueiras, C., Bécares, E., & Blanco, S. (2010). Spatiotemporal changes in diatom ecological profiles: Implications for biomonitoring. Limnology, 12, 157–168.CrossRefGoogle Scholar
  5. Austin, M. P. (2002). Spatial prediction of species distribution: An interface between ecological theory and statistical modelling. Ecological Modelling, 157, 101–118.CrossRefGoogle Scholar
  6. Bellinger, B. J., Cocquyt, C., & O’Reilly, C. M. (2006). Benthic diatoms as indicators of eutrophication in tropical streams. Hydrobiologia, 573, 75–87.CrossRefGoogle Scholar
  7. Birks, H. J. B., Line, J. M., Juggins, S., Stevenson, A. C., & ter Braak, C. J. F. (1990). Diatoms and pH reconstruction. Philosophical Transactions of the Royal Society of London, Series B, 327, 263–278.CrossRefGoogle Scholar
  8. Blanco, S., & Bécares, E. (2010). Are biotic indices sensitive to river toxicants? A comparison of metrics based on diatoms and macro-invertebrates. Chemosphere, 79, 18–25.CrossRefGoogle Scholar
  9. Blanco, S., Bécares, E., Cauchie, H. M., Hoffmann, L., & Ector, L. (2007). Comparison of biotic indices for water quality diagnosis in the Duero Basin (Spain). Archiv fuer Hydrobiologie Supplement Large Rivers, 17, 267–286.Google Scholar
  10. Blanco, S., Ector, L., Huck, V., Monnier, O., Cauchie, H. M., Hoffmann, L., & Bécares, E. (2008). Diatom assemblages and water quality assessment in the Duero Basin (NW Spain). Belgian Journal of Botany, 141, 39–50.Google Scholar
  11. Blanco, S., Álvarez-Blanco, I., Cejudo-Figueiras, C., & Bécares, E. (2011). Guía de las diatomeas de la cuenca del Duero. León: Ministerio de Medio Ambiente, Medio Rural y Marino/Confederación Hidrográfica del Duero.Google Scholar
  12. CEMAGREF. (1982). Etude des Méthodes Biologiques d’Appréciation Quantitative de la Qualité des Eaux. Lyon: Agence de l’Eau Rhône-Méditerranée-Corse.Google Scholar
  13. Charles, D. F., Acker, F. W., Hart, D. D., Reimer, C. W., & Cotter, P. B. (2006). Large-scale regional variation in diatom–water chemistry relationships: Rivers of the eastern United States. Hydrobiologia, 561, 27–57.CrossRefGoogle Scholar
  14. Coste, M., & Ayphassorho, H. (1991). Étude de la qualité des eaux du Bassin Artois-Picardie a l’aide des communautés de diatomées benthiques (Application des indices diatomiques). Douai: Agence de l’Eau Artois-Picardie.Google Scholar
  15. Coste, M., Bosca, C., & Dauta, A. (1991). Use of algae for monitoring rivers in France. In B. A. Whitton, E. Rott, & G. Friedrich (Eds.), Use of algae for monitoring rivers (pp. 75–88). Innsbruck: Institut für Botanik, Universität in Innsbruck.Google Scholar
  16. de la Rey, P. A., Taylor, J. C., Laas, A., van Rensburg, L., & Vosloo, A. (2004). Determining the possible application value of diatoms as indicators of general water quality: A comparison with SASS 5. Water SA, 30, 325–332.Google Scholar
  17. Delgado, C., Pardo, I., & García, L. (2010). A multimetric diatom index to assess the ecological status of coastal Galician rivers (NW Spain). Hydrobiologia, 644, 371–384.CrossRefGoogle Scholar
  18. Denys, L. (2004). Relation of abundance-weighted averages of diatom indicator values to measured environmental conditions in standing freshwaters. Ecological Indicators, 4, 255–275.CrossRefGoogle Scholar
  19. Descy, J. P. (1979). A new approach to water quality estimation using diatoms. Nova Hedwigia, 64, 305–323.Google Scholar
  20. EC Parliament & Council (2000). Directive of the European Parliament and of the Council 2000/60/EC Establishing a Framework for community action in the field of water policy. Luxembourg: European Commission PECONS 3639/1/100 Rev 1.Google Scholar
  21. Ector, L., & Rimet, F. (2005). Using bioindicators to assess rivers in Europe: An overview. In S. Lek, M. Scardi, P. F. M. Verdonschot, J. P. Descy, & Y. S. Park (Eds.), Modelling community structure in freshwater ecosystems (pp. 7–19). Berlin: Springer.Google Scholar
  22. Ellenberg, H. (1948). Unkrautgesellschaften als Mass für den Säuregrad, die Verdichtung und Andere Eigenschaften des Ackerbodens. Berichte Landtechnik, 4, 130–146.Google Scholar
  23. Friend, P. F., & Dabrio, C. J. (1996). Tertiary basins of Spain: The stratigraphic record of crustal kinematics. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  24. García, D., & González, M. (1986). Métodos biológicos para el estudio de la calidad de las aguas aplicación a la Cuenca del Duero. Madrid: Ministry of Agriculture Fisheries and Food. ICONA.Google Scholar
  25. Gomà, J., Ortíz, R., Cambra, J., & Ector, L. (2004). Water quality evaluation in Catalonian Mediterranean rivers using epilithic diatoms as bioindicators. Vie et Milieu-Life and Environment, 54, 81–90.Google Scholar
  26. Hansson, L. A., Gyllström, M., Ståhl-Delbanco, A., & Svensson, M. (2004). Responses to fish predation and nutrients by plankton at different levels of taxonomic resolution. Freshwater Biology, 49, 1538–1550.CrossRefGoogle Scholar
  27. Karthick, B., Taylor, J. C., Mahesh, M. K., & Ramachandra, T. V. (2010). Protocols for collection, preservation and enumeration of diatoms from aquatic habitats for water quality monitoring in India. Journal of Soil and Water Sciences, 3, 25–60.Google Scholar
  28. Kelly, M. G. (1998). Use of the Trophic Diatom Index to monitor eutrophication in rivers. Water Research, 32, 236–242.CrossRefGoogle Scholar
  29. Kelly, M. G., Penny, C. J., & Whitton, B. A. (1995). Comparative performance of benthic diatom indices used to assess river water quality. Hydrobiologia, 302, 179–188.CrossRefGoogle Scholar
  30. Kelly, M. G., Haigh, A., Colette, J., & Zgrundo, A. (2009). Effect of environmental improvements on the diatoms of the River Axe, Southern England. Fottea, 9, 343–349.Google Scholar
  31. Kovács, C., Kahlert, M., & Padisák, J. (2006). Benthic diatom communities along pH and TP gradients in Hungarian and Swedish streams. Journal of Applied Phycology, 18, 105–117.CrossRefGoogle Scholar
  32. Krammer, K., & Lange-Bertalot, H. (1991–2000). Bacillariophyceae 1–4. Teil: Naviculaceae. In: A. Pascher (ed.), Süsswasserflora von Mitteleuropa. Band 2/1-4. Berlin: Gustav Fischer Verlag.Google Scholar
  33. Kwandrans, J., Eloranta, P., Kawecka, B., & Wojtan, K. (1998). Use of benthic diatom communities to evaluate water quality in rivers of southern Poland. Journal of Applied Phycology, 10, 193–201.CrossRefGoogle Scholar
  34. Lange-Bertalot, H. (1979). Pollution tolerance of diatoms as a criterion for water quality estimation. Nova Hedwigia, 64, 285–304.Google Scholar
  35. Lange-Bertalot, H. (Ed.) (1995–2002). Iconographia Diatomologica. Annotated Diatom Micrographs Vols. 1–9. Königstein: Koeltz Scientific Books.Google Scholar
  36. Martin, E., Beaugrand, G., Reid, P. C., Rowden, A. A., & Jones, M. B. (2002). Ocean climate anomalies and the ecology of the North Sea. Marine Ecology Progress Series, 239, 1–10.CrossRefGoogle Scholar
  37. Mingo, J. (1981). La vigilancia de la contaminación fluvial. Madrid: DGOHIMOPU.Google Scholar
  38. Nygaard, G. (1996). Temporal and spatial development of individual species of plankton algae from European lakes. Hydrobiologia, 332, 71–91.CrossRefGoogle Scholar
  39. Pan, Y., Stevenson, R. J., Hill, B. H., Herlihy, A. T., & Collins, G. B. (1996). Using diatoms as indicators of ecological conditions in lotic systems: A regional assessment. Journal of the North American Benthological Society, 15, 481–495.CrossRefGoogle Scholar
  40. Pantle, R., & Buck, H. (1955). Die biologische Ueberwachung der Gewässer und die Darstellung der Ergebnisse. Gasund Wasserfach, 96, 604.Google Scholar
  41. Philibert, A., & Prairie, Y. T. (1999). Diatom inferred paleolimnological reconstructions: Do they work in nutrient rich lakes? In T. S. Veeman, D. W. Smith, B. G. Purdy, F. J. Salkie, & G. A. Larkin (Eds.), Proceedings of the 1999 Sustainable Forest Management Network Conference (pp. 155–160). Edmonton: SFM Network.Google Scholar
  42. Pipp, E. (2002). A regional diatom-based trophic state indication system for running water sites in Upper Austria and its over-regional applicability. Verhandlungen Internationale Vereinigung fur Theoretische und Angewandte Limnologie, 27, 3376–3380.Google Scholar
  43. Ponader, K. C., Charles, D. F., & Belton, T. J. (2007). Diatom-based TP and TN inference models and indices for monitoring nutrient enrichment of New Jersey streams. Ecological Indicators, 7, 79–93.CrossRefGoogle Scholar
  44. Potapova, M., & Charles, D. F. (2003). Distribution of benthic diatoms in U.S. rivers in relation to conductivity and ionic composition. Freshwater Biology, 48, 1311–1328.CrossRefGoogle Scholar
  45. Potapova, M., & Charles, D. F. (2007). Diatom metrics for monitoring eutrophication in rivers of the United States. Ecological Indicators, 7, 48–70.CrossRefGoogle Scholar
  46. Potapova, M., Charles, D. F., Ponader, K. C., & Winter, D. M. (2004). Quantifying species indicator values for trophic diatom indices: Comparison of approaches. Hydrobiologia, 517, 25–41.CrossRefGoogle Scholar
  47. Quillfeldt, C. H., Ambrose, W. G., Jr., & Clough, L. M. (2003). High number of diatom species in first-year ice from the Chukchi Sea. Polar Biology, 26, 806–818.CrossRefGoogle Scholar
  48. Resende, P., Azeiteiro, U., & Pereira, M. J. (2005). Diatom ecological preferences in a shallow temperate estuary (Ría de Aveiro, Western Portugal). Hydrobiologia, 544, 77–88.CrossRefGoogle Scholar
  49. Rimet, F., Ector, L., Cauchie, H. M., & Hoffmann, L. (2004). Regional distribution of diatom assemblages in the headwater streams of Luxembourg. Hydrobiologia, 520, 105–117.CrossRefGoogle Scholar
  50. Rott, E., Hofmann, P. G., Pall, K., Pfister, P., & Pipp, E. (1997). Indikationslisten für Aufwuchsalgen in österreichischen Fliessgewässern, Teil 1: Saprobielle Indikation. Wien: Bundesministerium für Land-und Forstwirtschaft.Google Scholar
  51. Rott, E., Pipp, E., & Pfister, P. (2003). Diatom methods developed for river quality assessment in Austria and a cross-check against numerical trophical indication methods used in Europe. Algological Studies, 110, 91–115.CrossRefGoogle Scholar
  52. Round, F. E. (1991). Diatoms in river water-monitoring studies. Journal of Applied Phycology, 3, 129–145.CrossRefGoogle Scholar
  53. Round, F. E. (1993). A review and methods for the use of epilithic diatoms for detecting and monitoring changes in river water quality. Methods for the examination of water and associated materials. London: HMSO Publications.Google Scholar
  54. Rumeau, A., & Coste, M. (1988). Initiation à la systématique des diatomées d'eau douce pour l'utilisation pratique d'un indice diatomique générique. Bulletin Francais de la Peche et de la Pisciculture, 309, 1–69.CrossRefGoogle Scholar
  55. Sánchez-Montoya, M. M., Suárez, M. L., Vidal-Abarca, M. R., Poquet, J. M., Puntí, T., Robles, S. S., Álvarez, M., Alba-Tercedor, J., Prat, N., Pujante, A. M., Rieradevall, M., Toro, M., & Zamora, C. (2010). Propuesta y aplicación de criterios para la selección de estaciones de referencia en ríos mediterráneos en el contexto de la Directiva Marco del Agua. Tecnología del agua, 266, 42–53.Google Scholar
  56. Sládeček, V. (1973). System of water quality from the biological point of view. Archiv für Hydrobiologie Beiheft, 7, 1–218.Google Scholar
  57. StatSoft, Inc. (2007). STATISTICA (data analysis software system), version 8.0.Google Scholar
  58. Stevenson, R. J., & Pan, Y. (1999). Assessing environmental conditions in rivers and streams with diatoms. In S. Stoermer & J. P. Smol (Eds.), The diatoms: Applications for the environmental and earth sciences (pp. 11–40). Cambridge: Cambridge University Press.Google Scholar
  59. ter Braak, C. J. F., & van Dam, H. (1989). Inferring pH from diatoms: A comparison of old and new calibration methods. Hydrobiologia, 178, 209–223.CrossRefGoogle Scholar
  60. ter Braak, C. J. F., & Juggins, S. (1993). Weighted averaging partial least squares regression (WA-PLS): An improved method for reconstructing environmental variables from species assemblages. Hydrobiologia, 269(270), 485–502.CrossRefGoogle Scholar
  61. van Dam, H., Mertens, A., & Sinkeldam, J. (1994). A coded checklist and ecological indicator values of freshwater diatoms from The Netherlands. Netherlands Journal of Aquatic Ecology, 28, 117–133.CrossRefGoogle Scholar
  62. Werner, D. (1977). The biology of diatoms. Oxford: Blackwell.Google Scholar
  63. Winter, J. G., & Duthie, H. C. (2000). Epilithic diatoms as indicators of stream total N and total P concentration. Journal of the North American Benthological Society, 19, 32–49.CrossRefGoogle Scholar
  64. Woelfel, J., Schumann, R., Adler, S., Hübener, T., & Karsten, U. (2007). Diatoms inhabiting a wind flat of the Baltic Sea: Species diversity and seasonal succession. Estuarine, Coastal and Shelf Science, 75, 296–307.CrossRefGoogle Scholar
  65. Wu, J.-T. (1999). A generic index of diatom assemblages as bioindicator of pollution in the Keelung River of Taiwan. Hydrobiologia, 397, 79–87.CrossRefGoogle Scholar
  66. Zelinka, M., & Marvan, P. (1961). Zur Präzisirung der biologischen Klassifikation der Reinheit fliessender Gewaässer. Archiv für Hydrobiologie, 57, 389–407.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Irene Álvarez-Blanco
    • 1
  • Saúl Blanco
    • 1
  • Cristina Cejudo-Figueiras
    • 2
  • Eloy Bécares
    • 1
  1. 1.Department of Biodiversity and Environmental ManagementUniversity of LeónLeónSpain
  2. 2.CIMERA Estudios Aplicados, SLTres CantosSpain

Personalised recommendations