Advertisement

Environmental Monitoring and Assessment

, Volume 185, Issue 1, pp 241–251 | Cite as

Water quality associated public health risk in Bo, Sierra Leone

  • David H. Jimmy
  • Abu J. Sundufu
  • Anthony P. Malanoski
  • Kathryn H. Jacobsen
  • Rashid Ansumana
  • Tomasz A. Leski
  • Umaru Bangura
  • Alfred S. Bockarie
  • Edries Tejan
  • Baochuan Lin
  • David A. Stenger
Article

Abstract

Human health depends on reliable access to safe drinking water, but in many developing countries only a limited number of wells and boreholes are available. Many of these water resources are contaminated with biological or chemical pollutants. The goal of this study was to examine water access and quality in urban Bo, Sierra Leone. A health census and community mapping project in one neighborhood in Bo identified the 36 water sources used by the community. A water sample was taken from each water source and tested for a variety of microbiological and physicochemical substances. Only 38.9% of the water sources met World Health Organization (WHO) microbial safety requirements based on fecal coliform levels. Physiochemical analysis indicated that the majority (91.7%) of the water sources met the requirements set by the WHO. In combination, 25% of these water resources met safe drinking water criteria. No variables associated with wells were statistically significant predictors of contamination. This study indicated that fecal contamination is the greatest health risk associated with drinking water. There is a need to raise hygiene awareness and implement inexpensive methods to reduce fecal contamination and improve drinking water safety in Bo, Sierra Leone.

Keywords

Groundwater Water resources Water-borne diseases Microbiology Physicochemistry Sierra Leone 

Notes

Acknowledgments

The funding for this project is provided by the Office of Naval Research and the Office of the Under Secretary of Defense for Acquisition, Technology, and Logistics. We thank Dr. Robert A. Rubins at Whittier College (Whittier, CA) for providing guidance in statistical analysis. We also thank Ms. Anne Kusterbeck and Dr. Jinny Liu for critical review of this manuscript. The opinions and assertions contained herein are those of the authors and none are to be construed as those of the US Department of Defense, US Department of the Navy, any other military service, or Government Agency at large.

Conflicts of interest

None declared.

Supplementary material

10661_2012_2548_MOESM1_ESM.doc (81 kb)
Supplemental Table 1 Levels of anions in underground water samples (DOC 81 kb)

References

  1. Adomako, D., Nyarko, B. J., Dampare, S. B., Serfor-Armah, Y., Osae, S., Fianko, J. R., et al. (2008). Determination of toxic elements in waters and sediments from River Subin in the Ashanti Region of Ghana. Environmental Monitoring and Assessment, 141(1–3), 165–175. doi: 10.1007/s10661-007-9885-x.CrossRefGoogle Scholar
  2. Ansumana, R., Malanoski, A. P., Bockarie, A. S., Sundufu, A. J., Jimmy, D. H., Bangura, U., et al. (2010). Enabling methods for community health mapping in developing countries. International Journal of Health Geographics, 9. doi: 10.1186/1476-072x-9-56. Artn 56.
  3. Ayanlaja, S., Kehinde-Phillips, O. O., Ogunkolo, F., Dada, B., & Senjobi, B. A. (2005). Quality of water from hand-dug wells, boreholes, and streams in two localities in southwest Nigeria: implications for incidence of water borne diseases. Bringing Groundwater Quality Research to the Watershed Scale, 297, 44–49.Google Scholar
  4. Bordalo, A. A., & Savva-Bordalo, J. (2007). The quest for safe drinking water: an example from Guinea-Bissau (West Africa). Water Research, 41(13), 2978–2986. doi: 10.1016/j.watres.2007.03.021.CrossRefGoogle Scholar
  5. Cabral, J. P. S. (2010). Water microbiology. Bacterial pathogens and water. International Journal of Environmental Research and Public Health, 7(10), 3657–3703. doi: 10.3390/ijerph7103657.CrossRefGoogle Scholar
  6. Clasen, T. F., & Bastable, A. (2003). Faecal contamination of drinking water during collection and household storage: the need to extend protection to the point of use. Journal of Water and Health, 1(3), 109–115.Google Scholar
  7. Donkor, S. M., Kargbo, J., & Niyimbona, P. (2007). Water supply and sanitation policy for Sierra Leone. Addis Ababa: United Nations Economic Policy for Africa.Google Scholar
  8. Edge, T. A., & Hill, S. (2007). Multiple lines of evidence to identify the sources of fecal pollution at a freshwater beach in Hamilton Harbour, Lake Ontario. Water Research, 41(16), 3585–3594. doi: 10.1016/j.watres.2007.05.012.CrossRefGoogle Scholar
  9. Ejechi, B. O., Olobaniyi, S. B., Ogban, F. E., & Ugbe, F. C. (2007). Physical and sanitary quality of hand-dug well water from oil-producing area of Nigeria. Environmental Monitoring and Assessment, 128(1–3), 495–501. doi: 10.1007/s10661-006-9343-1.CrossRefGoogle Scholar
  10. EPA (2009a). National primary drinking water regulations. United States Environmental Protection Agency.Google Scholar
  11. EPA (2009b). National secondary drinking water regulations. United States Environmental Protection Agency.Google Scholar
  12. Fianko, J. R., Adomako, D., Osae, S., Ganyaglo, S. S., Kortatsi, B. K., Tay, C. K., et al. (2010a). The hydrochemistry of groundwater in the Densu River Basin, Ghana. Environmental Monitoring and Assessment, 167(1–4), 663–674. doi: 10.1007/s10661-009-1082-7.CrossRefGoogle Scholar
  13. Fianko, J. R., Nartey, V. K., & Donkor, A. (2010b). The hydrochemistry of groundwater in rural communities within the Tema District, Ghana. Environmental Monitoring and Assessment, 168(1–4), 441–449. doi: 10.1007/s10661-009-1125-0.CrossRefGoogle Scholar
  14. Foppen, J. W. A., & Schijven, J. F. (2005). Transport of E. coli in columns of geochemically heterogeneous sediment. Water Research, 39(13), 3082–3088. doi: 10.1016/j.watres.2005.05.023.CrossRefGoogle Scholar
  15. Haruna, R., Ejobi, F., & Kabagambe, E. K. (2005). The quality of water from protected springs in Katwe and Kisenyi parishes, Kampala city, Uganda. African Health Sciences, 5(1), 14–20.Google Scholar
  16. Howard, G., Pedley, S., Barrett, M., Nalubega, M., & Johal, K. (2003). Risk factors contributing to microbiological contamination of shallow groundwater in Kampala, Uganda. Water Research, 37(14), 3421–3429. doi: 10.1016/S0043-1354(03)00235-5.CrossRefGoogle Scholar
  17. Islam, R., Salminen, R., & Lahermo, P. W. (2000). Arsenic and other toxic elemental contamination of groundwater, surface: water and soil in Bangladesh and its possible effects on human health. Environmental Geochemistry and Health, 22(1), 33–53.CrossRefGoogle Scholar
  18. Jaji, M. O., Bamgbose, O., Odukoya, O. O., & Arowolo, T. A. (2007). Water quality assessment of Ogun river, South West Nigeria. Environmental Monitoring and Assessment, 133(1–3), 473–482. doi: 10.1007/s10661-006-9602-1.CrossRefGoogle Scholar
  19. Kallon, S. B. (2008). Pollution and sanitation problems as setbacks to sustainable water resources management in Freetown. Journal of Environmental Health, 71(5), 34–37.Google Scholar
  20. Koroma, D. S., Turay, A. B., & Moigua, M. B. (2006). Analytic report on population projection for Sierra Leone (Sierra Leone 2004 Population and Housing Census). Freetown, Sierra Leone: Statistics Sierra Leone.Google Scholar
  21. Kozuskanich, J., Novakowski, K. S., & Anderson, B. C. (2011). Fecal indicator bacteria variability in samples pumped from monitoring wells. Ground Water, 49(1), 43–52. doi: 10.1111/j.1745-6584.2010.00713.x.CrossRefGoogle Scholar
  22. McIlvin, M. R., & Altabet, M. A. (2005). Chemical conversion of nitrate and nitrite to nitrous oxide for nitrogen and oxygen isotopic analysis in freshwater and seawater. Analytical Chemistry, 77(17), 5589–5595. doi: 10.1021/Ac050528s.CrossRefGoogle Scholar
  23. Muana, J. L. K., & Gegbe, M. A. B. (2006). Analytic report on housing situation and characteristics (Sierra Leone 2004 Population and Housing Census). Freetown, Sierra Leone: Statistics Sierra Leone.Google Scholar
  24. Mukhtar, M., & Tahir, H. (2007). Determination of levels of fluoride and trace metal ions in drinking waters and remedial measures to purify water. African Journal of Biotechnology, 6(22), 2541–2549.Google Scholar
  25. Muniesa, M., Jofre, J., Garcia-Aljaro, C., & Blanch, A. R. (2006). Occurrence of Escherichia coli O157:H7 and other enterohemorrhagic Escherichia coli in the environment. Environmental Science and Technology, 40(23), 7141–7149.CrossRefGoogle Scholar
  26. Nartey, V. K., Fianko, J. R., & Donkor, A. (2004). Physico-chemical analysis of streams on the Akwapim Ridge of Ghana. Bulletin of Environmental Contamination and Toxicology, 73(2), 292–298. doi: 10.1007/s00128-004-0426-9.CrossRefGoogle Scholar
  27. Nduka, J. K., & Orisakwe, O. E. (2011). Water-quality issues in the Niger Delta of Nigeria: a look at heavy metal levels and some physicochemical properties. Environmental Science and Pollution Research, 18(2), 237–246. doi: 10.1007/s11356-010-0366-3.CrossRefGoogle Scholar
  28. Omezuruike, O. I., Damilola, A. O., Adeola, O. T., Fajobi, E. A., & Shittu, O. B. (2008). Microbiological and physicochemical analysis of different water samples used for domestic purposes in Abeokuta and Ojota, Lagos State, Nigeria. African Journal of Biotechnology, 7(5), 617–621.Google Scholar
  29. Pedley, S., & Howard, G. (1997). The public health implications of microbiological contamination of groundwater. The Quarterly Journal of Engineering Geology, 30, 179–188.CrossRefGoogle Scholar
  30. Personne, J. C., Poty, F., Vaute, L., & Drogue, C. (1998). Survival, transport and dissemination of Escherichia coli and enterococci in a fissured environment. Study of a flood in a karstic aquifer. Journal of Applied Microbiology, 84(3), 431–438.CrossRefGoogle Scholar
  31. Powell, K. L., Taylor, R. G., Cronin, A. A., Barrett, M. H., Pedley, S., Sellwood, J., et al. (2003). Microbial contamination of two urban sandstone aquifers in the UK. Water Research, 37(2), 339–352.CrossRefGoogle Scholar
  32. Prüss-Üstün, A., Bos, R., Gore, F., & Bartram, J. (2008). Safe water, better health: costs, benefits and sustainability of interventions to protect and promote health. Geneva: WHO Press.Google Scholar
  33. Quagraine, E. K., & Adokoh, C. K. (2010). Assessment of dry season surface, ground, and treated water quality in the Cape Coast municipality of Ghana. Environmental Monitoring and Assessment, 160(1–4), 521–539. doi: 10.1007/s10661-008-0716-5.CrossRefGoogle Scholar
  34. Reimann, C., & Banks, D. (2004). Setting action levels for drinking water: are we protecting our health or our economy (or our backs!)? Science of the Total Environment, 332(1–3), 13–21. doi: 10.1016/j.scitotenv.2004.04.007.CrossRefGoogle Scholar
  35. Savichtcheva, O., & Okabe, S. (2006). Alternative indicators of fecal pollution: relations with pathogens and conventional indicators, current methodologies for direct pathogen monitoring and future application perspectives. Water Research, 40(13), 2463–2476. doi: 10.1016/j.watres.2006.04.040.CrossRefGoogle Scholar
  36. Schets, F. M., During, M., Italiaander, R., Heijnen, L., Rutjes, S. A., van der Zwaluw, W. K., et al. (2005). Escherichia coli O157:H7 in drinking water from private water supplies in the Netherlands. Water Research, 39(18), 4485–4493. doi: 10.1016/j.watres.2005.08.025.CrossRefGoogle Scholar
  37. Sen, A., Rao, K. K., Frizzell, M. A., & Rao, G. (1998). A low-cost device for the estimation of fluoride in drinking water. Field Analytical Chemistry and Technology, 2(1), 51–58.CrossRefGoogle Scholar
  38. Shayo, N. B., Chove, B. E., Gidamis, A. B., & Ngoma, O. B. (2007). The quality of water in small community supplies of Kingolwira village, Morogoro, Tanzania. Tanzania Health Research Bulletin, 9(1), 56–60.Google Scholar
  39. van Lieverloo, J. H., Mesman, G. A., Bakker, G. L., Baggelaar, P. K., Hamed, A., & Medema, G. (2007). Probability of detecting and quantifying faecal contaminations of drinking water by periodically sampling for E. coli: a simulation model study. Water Research, 41(19), 4299–4308. doi: 10.1016/j.watres.2007.06.003.CrossRefGoogle Scholar
  40. WHO. (2006). Health profile of Sierra Leone. Freetown, Sierra Leone: WHO Sierra Leone Country Office.Google Scholar
  41. WHO. (2008). Guidelines for drinking-water quality (3rd ed.). Geneva, Switzerland: WHO Press, World Health Organization.Google Scholar
  42. Zamxaka, M., Pironcheva, G., & Muyima, N. Y. O. (2004). Microbiological and physico-chemical assessment of the quality of domestic water sources in selected rural communities of the Eastern Cape Province, South Africa. Water SA, 30(3), 333–340.Google Scholar

Copyright information

© Springer Science+Business Media B.V. (outside the USA) 2012

Authors and Affiliations

  • David H. Jimmy
    • 1
    • 2
  • Abu J. Sundufu
    • 1
  • Anthony P. Malanoski
    • 3
  • Kathryn H. Jacobsen
    • 4
  • Rashid Ansumana
    • 1
    • 2
  • Tomasz A. Leski
    • 3
  • Umaru Bangura
    • 2
  • Alfred S. Bockarie
    • 1
    • 2
  • Edries Tejan
    • 5
  • Baochuan Lin
    • 3
  • David A. Stenger
    • 3
  1. 1.Njala UniversityBoSierra Leone
  2. 2.Mercy Hospital Research LaboratoryBoSierra Leone
  3. 3.Center for Bio/Molecular Science and EngineeringNaval Research LaboratoryWashingtonUSA
  4. 4.Department of Global and Community HealthGeorge Mason UniversityFairfaxUSA
  5. 5.Mercy HospitalBoSierra Leone

Personalised recommendations