Environmental Monitoring and Assessment

, Volume 185, Issue 1, pp 197–203 | Cite as

Evaluating the metallic pollution of riverine water and sediments: a case study of Aras River

  • F. Nasehi
  • A. H. Hassani
  • M. Monavvari
  • A. R. Karbassi
  • N. Khorasani


Metallic pollution caused by elements Zn, Cu, Fe, Pb, Ni, Cd, and Hg in water and sediments of Aras River within a specific area in Ardabil province of Iran is considered. Water and sediment samples were collected seasonally and once respectively from the five selected stations. Regarding WHO published permissible values, only Ni concentration in spring and summer water samples has exceeded the acceptable limit up to four times greater than the limit. The concentration of metals Ni, Pb, and Fe in river water shows a direct relationship with river water discharge and the amount of precipitation. Enhanced soil erosion, bed load dissolution, and runoffs may play a key role in remarkable augmentation of metallic ions concentration. Furthermore, excessive use of pesticides which contain a variety of metallic ions (mainly Cu) in spring and summer may also result in an increase in the metals’ concentration. The potential risk of Ni exposure to the water environment of the study area is assigned to juice, dairy products, edible oil, and sugar cane factories as well as soybean crop lands which are located within the sub-basin of Aras River in the study area. Regarding the sediment samples, the bioavailable metal concentrations indicate an ascending order from the first station towards the last one. In comparison with earth crust, sedimental and igneous rocks the reported metallic concentration values, except for Cd, lie within the low-risk status. Regarding Cd, the reported values in some stations (S2, S4, and S5) are up to ten times greater than that of shale which may be considered as a remarkable risk potential. The industrial and municipal wastewater generated by Parsabad moqan industrial complex and residential areas, in addition to the discharges of animal husbandry centers, may be addressed as the key factors in the sharp increase of metallic pollution potential in stations 4 and 5.


Metallic pollution Bioavailability Sediment Cluster analysis Aras River 


  1. Adekola, F. A., & Eletta, O. A. A. (2007). A study of heavy metal pollution of Asa river, Ilorin, Nigeria; trace metal monitoring and geochemistry. Environmental Monitoring and Assessment, 125, 157–163.CrossRefGoogle Scholar
  2. Alloway, B. J. (Ed.). (1995). Heavy metals in soils (2nd ed.). London: Blackie Academic & Professional.Google Scholar
  3. Ankley, G. T., Di Toro, D. M., Hansen, D. J., & Berry, W. J. (1996). Technical basis and proposal for deriving sediment quality criteria for metals. Environmental Toxicology and Chemistry, 15, 2056–2066.CrossRefGoogle Scholar
  4. APHA. (1992). Standard methods for the examination of water and wastewater. Washington, DC: APHA.Google Scholar
  5. Baghvand, A., Nasrabadi, T., Nabi Bidhendi, G. R., Vosoogh, A., Karbassi, A. R., & Mehrdadi, N. (2010). Groundwater quality degradation of an aquifer in Iran central desert. Desalination, 260(1-3), 264.CrossRefGoogle Scholar
  6. Boughriet, A., Quddance, B., Fischer, J. C., Wartel, M., & Leman, G. (1992). Variability of dissolved Mn and Zn in the Seine Estuary and chemical speciation of these metals in suspended matter. Water Research, 26, 1359–1378.CrossRefGoogle Scholar
  7. Carlton, D., Rust, S. W., & Sinnott, L. (2007). Application of statistical modeling to optimize a coastal water qulity monitoring program. Environmental Monitoring and Assessment, 132(1–3), 505–522.Google Scholar
  8. Chester, R., & Hughes, R. M. (1967). A chemical technique for the separation of ferro-manganese minerals, carbonate minerals and adsorbed trace elements from pelagic sediment. Chemical Geology, 2, 249–262.CrossRefGoogle Scholar
  9. Drever, J. I. (1997). The geochemistry of natural waters (3rd ed., p. 436). Upper Saddle River: Prentice Hall.Google Scholar
  10. Forstner, U., & Wittmann, G. T. W. (1981). Metal pollution in aquatic environment. Berlin: Springer.CrossRefGoogle Scholar
  11. Gonzalez, A. E., Rodriguez, M. T., Sanchez, J. C. J., Espinosa, A. J. F., & De La Rosa, F. J. B. (2000). Assessment of metals in sediments in a tributary of Guadalquivir river (Spain). Heavy metal partitioning and relation between the water and sediment system. Water, Air, and Soil Pollution, 121(1–4), 11–29.CrossRefGoogle Scholar
  12. Horowitz, A. J., Meybeck, M., Idlafkih, Z., & Biger, F. (1999). Variations in trace element geochemistry in the Seine river basin based on floodplain deposits and bed sediments. Hydrological Processes, 13, 1329–1340.CrossRefGoogle Scholar
  13. Horsfall, M., & Spiff, A. I. (2002). Distribution and partitioning of trace metals in sediments of the lower reaches of the new Carlabar river, port Harcourt, Nigeria. Environmental Monitoring and Assessment, 78, 309–326.CrossRefGoogle Scholar
  14. Jain, C. K., & Sharma, C. K. (2001). Distribution of trace metals in the Hindon river system, India. Journal of Hydrology, 253, 81–90.CrossRefGoogle Scholar
  15. Karbassi, A. R., Nouri, J., & Ayaz, G. O. (2007). Flocculation of trace metals during mixing of Talar river water with Caspian seawater. International Journal of Environmental Research, 1(1), 66–73.Google Scholar
  16. Karbassi, A. R., Monavari, S. M., Nabi Bidhendi, Gh. R., Nouri, J., & Nematpour, K. (2008). Metal pollution assessment of sediment and water in the Shur River. Environmental Monitoring and Assessment, 147, 107–116.CrossRefGoogle Scholar
  17. Klavins, M., Briede, A., Rodinov, V., Kokorite, I., Parele, E., & Klavina, I. (2000). Heavy metals in river of Lativa. Science of the Total Environment, 262, 175–183.CrossRefGoogle Scholar
  18. Li, Y., Yu, Z., Song, X., & Mu, Q. (2006). Trace metal concentrations in suspended particles, sediments and clams from Jiaozhou Bay of China. Environmental Monitoring and Assessment, 121, 491–501.CrossRefGoogle Scholar
  19. Matthies, M., Berlekamp, J., Lautenbach, S., Graf, N., & Reimer, S. (2006). System analysis of water quality management for the Elbe river basin. Environmental Modeling & Software, 21, 1309–1318.CrossRefGoogle Scholar
  20. Mehrdadi, N., Nabi Bidhendi, G. R., Nasrabadi, T., Hoveidi, H., Amjadi, M., & Shojaee, M. A. (2009). Monitoring the arsenic concentration in groundwater resources, case study: Ghezel ozan Water Basin, Kurdistan, Iran. Asian Journal of Chemistry, 21(1), 446–450.Google Scholar
  21. Merian, E. (Ed.). (1991). Metals and their compounds in the environment: Occurrence, analysis and biological relevance (p. 1438). Weinheim: VCH.Google Scholar
  22. Nabi Bidhendi, G. R., Karbassi, A. R., Nasrabadi, T., & Hoveidi, H. (2007). Influence of copper mine on surface water quality. International Journal of Environmental Science and Technology, 4(1), 85–91.Google Scholar
  23. Nasrabadi, T., Nabi Bidhendi, G. R., Karbassi, A. R., Hoveidi, H., Nasrabadi, I., Pezeshk, H., et al. (2009). Influence of Sungun copper mine on groundwater quality, NW Iran. Environmental Geology, 58, 693–700.CrossRefGoogle Scholar
  24. Nasrabadi, T., Nabi Bidhendi, G. R., Karbassi, A. R., & Mehrdadi, N. (2010a). Partitioning of metals in sediments of the Haraz River (Southern Caspian Sea basin), 2010. Environmental Earth Sciences, 59, 1111–1117.CrossRefGoogle Scholar
  25. Nasrabadi, T., Nabi Bidhendi, G. R., Karbassi, A. R., & Mehrdadi, N. (2010b). Evaluating the efficiency of sediment metal pollution indices in interpreting the pollution of Haraz River sediments, southern Caspian Sea basin. Environmental Monitoring and Assessment, 171(1-4), 395–410.CrossRefGoogle Scholar
  26. Otto, M. (1998). Multivariate methods. In R. Kellner, J. M. Mermet, M. Otto, & H. M. Widmer (Eds.), Analytical chemistry. Weinheim: Wiley-VCH.Google Scholar
  27. Pardo, R., Barrado, E., Perez, L., & Vega, M. (1990). Determination and association of heavy metals in sediments of the Pisucrga, river. Water Research, 24(3), 373–379.CrossRefGoogle Scholar
  28. Sharma, V. K., Rhhudy, K. B., Koening, R., & Vazquez, F. G. (1999). Metals in sediments of the upper Languna Madra. Marine Pollution Bulletin, 38(12), 1221–1226.CrossRefGoogle Scholar
  29. Shrestha, S., & Kazama, F. (2007). Assessment of surface water quality using multivariate statistical techniques: A case study of the Fuji river basin, Japan. Environmental Modeling & Software, 22, 464–475.CrossRefGoogle Scholar
  30. Singh, M. (2001). Heavy metal pollution in freshly deposited sediments of the Yamuna River (the Ganga river tributary): A case study from Delhi and Agra urban centers India. Environmental Geology, 40(6), 664–671.CrossRefGoogle Scholar
  31. Singh, K. P., Malik, A., Mohan, D., & Sinha, S. (2005). Water quality assessment and apportionment of pollution sources of Gomti river (India) using multivariate statistical techniques: A case study. Analytica Chimica Acta, 538, 355–374.CrossRefGoogle Scholar
  32. Srivastava, S. K., Gupta, V. K., & Anupam Mohan, D. (1994). Status of some toxic heavy metal ions in the upper reaches of river Gnages, Indian. Journal of Chemistry Society, 71, 29–34.Google Scholar
  33. Stamatis, N., Kamidis, N., & Sylaios, G. (2006). Sediment and suspended matter lead contamination in the gulf of Kavala, Greece. Environmental Monitoring and Assessment, 115, 433–449.CrossRefGoogle Scholar
  34. Taghinia, A., Basavarajappa, H. T., & Qaid Saeed, A. M. (2010). Heavy metal pollution of Kabini river sediments contamination through aquatic and solid food chain, Nanjangud, Mysore, Karnataka. International Journal of Environmental Research, 4(4), 629–636.Google Scholar
  35. Tessier, A., Campell, P. G. C., & Bisson, M. (1979). Sequential extraction procedure for the speciation of partition of particulate trace metals. Analytical Chemistry, 51, 844–851.CrossRefGoogle Scholar
  36. Turekian, K. K., & Wedepohl, K. H. (1961). Distribution of the elements in some major units of Earth’s crust. Bulletin of the Geological Society of America, 72, 175–192.CrossRefGoogle Scholar
  37. USEPA. (1997). Volunteer stream monitoring: A methods manual for water quality monitoring (p. 177). USEPA: Chicago.Google Scholar
  38. Vega, M., Pardo, R., Barrado, E., & Deban, L. (1998). Assessment of seasonal and polluting effects on the quality of river water by exploratory data analysis. Water Research, 32, 3581–3592.CrossRefGoogle Scholar
  39. Yu, K. Y., Tasi, L. J., Chen, S. H., & Ho, S. T. (2001). Chemical binding of heavy metals in anoxic river sediments. Water Research, 35(7), 4086–4094.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • F. Nasehi
    • 1
  • A. H. Hassani
    • 1
  • M. Monavvari
    • 1
  • A. R. Karbassi
    • 1
  • N. Khorasani
    • 1
  1. 1.Department of Environment and Energy, Science and Research BranchIslamic Azad UniversityTehranIran

Personalised recommendations