Skip to main content
Log in

Monitoring variation in greenhouse gases concentration in Urban Environment of Delhi

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Cities across the globe are considered as major anthropogenic sources of greenhouse gases (GHG), yet very few efforts has been made to monitor ambient concentration of GHG in cities, especially in a developing country like India. Here, variations in the ambient concentrations of carbon dioxide (CO2) and methane (CH4) in residential, commercial, and industrial areas of Delhi are determined from fortnightly daytime observations from July, 2008 to March, 2009. Results indicate that the average daytime ambient concentration of CO2 varied from 495 to 554 ppm in authorized residential areas, 503 to 621 ppm in the slums or jhuggies in the unauthorized residential areas, 489 to 582 ppm in commercial areas, and 512 to 568 ppm in industrial areas with an average of 541 ± 27 ppm. CH4 concentration varied from 652 to 5,356 ppbv in authorized residential areas, 500 to15,220 ppbv in the unauthorized residential areas, 921 to 11,000 ppbv in the commercial areas, and 250 to 2,550 ppbv in the industrial areas with an average of 3,226 ± 1,090 ppbv. A low mid-afternoon CO2 concentration was observed at most of the sites, primarily due to strong biospheric photosynthesis coupled with strong vertical mixing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Altshuller, A. P. (1968). Atmospheric analysis by gas chromatography. Advances in Chromatography, 5, 229–262.

    CAS  Google Scholar 

  • Berry, D., & Colls, J. J. (1990a). Atmospheric carbon dioxide and sulphur dioxide on an urban/rural transect—I. Continuous measurements at the transect ends. Atmospheric Environment, 24A, 2681–2688.

    CAS  Google Scholar 

  • Berry, D., & Colls, J. J. (1990b). Atmospheric carbon dioxide and sulphur dioxide on an urban/rural transect—II. Measurements along the transect. Atmospheric Environment, 24A, 2689–2694.

    CAS  Google Scholar 

  • Chaudhari, P. R., Gajghate, D. G., Dhadse, S., Suple, S., Satapathy, D. R., & Wate, S. R. (2007). Monitoring of environmental parameters for CO2 sequestration: a case study of Nagpur City, India. Environmental Monitoring and Assessment, 135, 281–290.

    Article  CAS  Google Scholar 

  • Day, T.A., Mueller, E.C., Xiong, F.S., & Balling, R.C. (2000). Temporal patterns in near surface CO2 concentrations in the Phoenix CO2 dome over contrasting vegetation types. In: American Meteorological Society (Ed.), Preprints of the Third Urban Environment Symposium, American Meteorological Society, Davis, CA, August 2000, 205–206. Boston: American Meteorological Society.

  • Economic Survey of Delhi, 2007–08, (2008). Planning Department, Government of National Capital Territory of Delhi.

  • Economics Survey of Delhi, 2008–09 (2009). Planning Department, Government of National Capital Territory of Delhi. Available at: http://delhi.gov.in/wps/wcm/connect/DoIT_Planning/planning/economic+survey+of+dehli/content+2008–09/demographic+profile

  • Ghauri, B., Salam, M., & Mirza, M. I. (1994). An assessment of air quality in Karachi, Pakistan. Environmental Monitoring and Assessment, 32, 37–45.

    Article  CAS  Google Scholar 

  • Graedel, T. E., Hawkins, D. T., & Claxton, L. D. (Eds.). (1986). Atmospheric chemical compound—Sources, occurrences and bioassay. Orlando: Academic. 732.

    Google Scholar 

  • Gratani, L., & Varone, L. (2005). Daily and seasonal variation of CO2 in the city of Rome in relationship with the traffic volume. Atmospheric Environment, 39, 2619–2624.

    Article  CAS  Google Scholar 

  • Grimmond, C. S. B., King, T. S., Gropley, F. P., Nowak, D. J., & Souch, C. (2002). Local scale fluxes of carbon dioxide in urban environments: Methodological challenge and results from Chikago. Environmental Pollution, 116, 5243–5254.

    Article  Google Scholar 

  • Idso, C. D., Idso, S. B., & Balling, R. B. (1998). The urban CO2 dome of Phoenix, Arizona. Physical Geography, 19, 95–108.

    Google Scholar 

  • Idso, C.D., Idso, S.B., & Balling, R.B.(2000). An intensive study of the strength and stability of the urban CO2 dome of Phoenix, AZ. In: American Meteorological Society (Ed.), Preprints of the Third Urban Environment Symposium, American Meteorological Society, Davis, California, August 2000, 203–204. Boston: American Meteorological Society.

  • Idso, S. B., Idso, C. D., & Balling, R. C., Jr. (2002). Seasonal and diurnal variations of near-surface atmospheric CO2 concentration within a residential sector of the urban CO2 dome of Phoenix, Arizona, USA. Atmospheric Environment, 36, 1655–1660.

    Article  CAS  Google Scholar 

  • McPherson, E. G., & Jo, H. K. (1995). Carbon storage and flux in urban residential green space. Journal of Environmental Management, 45, 109–133.

    Article  Google Scholar 

  • Ministry of Urban Development (Delhi Division) (2007) Master Plan for Delhi—With the perspective for the year 2021. The Gazette of India: Extraordinary, Part II, Sec. 3(ii), 29–39.

  • Miyaoka, Y., Inoue, H. Y., Sawa, Y., Matsued, A. H., & Taguchi, S. (2007). Diurnal and seasonal variations in atmospheric CO2 in Sapporo, Japan: Anthropogenic sources and biogenic sinks. Geochemical Journal, 41, 429–436.

    Article  CAS  Google Scholar 

  • Nakazawa, T., Sugawara, S., Inoue, G., Machida, T., Makshyutov, S., & Mukai, H. (1997). Air craft measurements of concentration of CO2, CH4, N2O and CO and the carbon and oxygen isotope ratios of CO2 in the troposphere over Russia. Journal of Geographical Research Atmospheres, 102(D3), 3843–3859.

    Article  CAS  Google Scholar 

  • Nasrallah, H. A., Balling, R. C., Jr., Madi, S. M., & Lamya, A. (2003). Temporal variations in atmospheric CO2 concentrations in Kuwait City, Kuwait with comparisons to Phoenix, Arizona, USA. Environmental Pollution, 121, 301–305.

    Article  CAS  Google Scholar 

  • Nguyen, T. H., Kim, K.-H., Mab, C. J., Cho, S. J., & Sohn, J. R. (2010). A dramatic shift in CO and CH4 levels at the urban location in Korea after the implementation of the Natural Gas Vehicle Supply (NGVS) program. Environmental Research, 110, 396–409.

    Article  CAS  Google Scholar 

  • Nowak, D. J. (1994). Atmospheric carbon dioxide reduction by Chicago’s urban forest. In E. G. McPherson, D. J. Nowak, & R. A. Rowntree (Eds.), Chicago’s urban forest ecosystem: Results of the Chicago Urban Forest Climate Project. USDA Forest Service Northeastern Forest Experiment Station (General Technical Report NE-186) (pp. 83–94). Radnor: USDA North East Forest Experimental Station.

    Google Scholar 

  • Padhy, P. K., & Varshney, C. K. (2000). Ambient methane levels in Delhi. Chemosphere - Global Change Science, 2, 185–190.

    Article  CAS  Google Scholar 

  • Registrar General (2001) Census of India, 2001, India, 2A, Mansingh Road, New Delhi 110011, 25th July, 2001

  • Reid, K. H., & Steyn, D. G. (1997). Diurnal variations of boundary-layer carbon dioxide in a coastal city—Observations and comparison with model results. Atmospheric Environment, 31, 3101–3114.

    Article  CAS  Google Scholar 

  • Rowland, F. S., Harries, N. R. P., & Blake, D. R. (1990). Methane in cities. Nature, 347, 432–433.

    Article  Google Scholar 

  • Sengupta, K., & Ramchandran, R. (1998). Tropical atmospheric boundary layer. Proceedings of the Indian National Science Academy, 64A, 267–279.

    Google Scholar 

  • State of Forest Report 2009; 2009. Forest Survey of India (Ministry of Environment & Forests, Govt. of India), http://www.fsi.nic.in/sfr_2009.htm

  • Tanaka, M., Nakazawa, T., & Aoki, S. (1983). High quality measurements of the concentrations of atmospheric carbon dioxide over Japan. Journal of Geophysical Research, 88, 1339–1344.

    Article  CAS  Google Scholar 

  • Velasco, E., Pressley, S., Allwine, E., Westberg, H., & Lamb, B. (2005). Measurements of CO2 fluxes from the Mexico City urban landscape. Atmospheric Environment, 39, 7433–7446.

    Article  CAS  Google Scholar 

  • Vinogradova, A. A., Fedorova, E. I., Belikov, I. B., Ginzburg, A. S., Elansky, N. F., & Skorokhod, A. I. (2007). Temporal variations in carbon dioxide and methane concentrations under urban conditions. Izvestiya, Atmospheric and Oceanic Physics, 43(5), 599–611.

    Article  Google Scholar 

  • Wang, Y.-S., Shou, L., Wang, M.-X., & Zheng, X.-H. (2001). Trends of atmospheric methane in Beijing. Chemosphere: Global Change Science, 3, 65–71.

    Article  CAS  Google Scholar 

  • Widory, D., & Javoy, M. (2003). The carbon isotope composition of atmospheric CO2 in Paris. Earth and Planetary Science Letters, 215, 289–298.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

Authors are thankful to the Department of Environment, Government of N.C.T. of Delhi for providing the fund for the research project for monitoring GHG’s concentration in Delhi. Support and help provided by the senior officials of the Department is greatly appreciated. Authors are also thankful to the unknown reviewers of this paper for their extremely valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samraj Sahay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sahay, S., Ghosh, C. Monitoring variation in greenhouse gases concentration in Urban Environment of Delhi. Environ Monit Assess 185, 123–142 (2013). https://doi.org/10.1007/s10661-012-2538-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-012-2538-8

Keywords

Navigation