Environmental Monitoring and Assessment

, Volume 184, Issue 12, pp 7473–7489 | Cite as

Vegetation dynamics, and land use and land cover change in the Bale Mountains, Ethiopia

  • Yohannes Kidane
  • Reinhold Stahlmann
  • Carl Beierkuhnlein


Shifts in biological communities are occurring at rapid rates as human activities induced global climate change increases. Understanding the effects of the change on biodiversity is important to reduce loss of biodiversity and mass extinction, and to insure the long-term persistence of natural resources and natures’ services. Especially in remote landscapes of developing countries, precise knowledge about on-going processes is scarce. Here we apply satellite imagery to assess spatio-temporal land use and land cover change (LULCC) in the Bale Mountains for a period of four decades. This study aims to identify the main drivers of change in vegetation patterns and to discuss the implications of LULCC on spatial arrangements and trajectories of floral communities. Remote sensing data acquired from Landsat MSS, Landsat ETM + and SPOT for four time steps (1973, 1987, 2000, and 2008) were analyzed using 11 LULC units defined based on the dominant plant taxa and cover types of the habitat. Change detection matrices revealed that over the last 40 years, the area has changed from a quite natural to a more cultural landscape. Within a representative subset of the study area (7,957.5 km−2), agricultural fields have increased from 1.71% to 9.34% of the total study area since 1973. Natural habitats such as upper montane forest, afroalpine grasslands, afromontane dwarf shrubs and herbaceous formations, and water bodies also increased. Conversely, afromontane grasslands have decreased in size by more than half (going from 19.3% to 8.77%). Closed Erica forest also shrank from 15.0% to 12.37%, and isolated Erica shrubs have decreased from 6.86% to 5.55%, and afroalpine dwarf shrubs and herbaceous formations reduced from 5.2% to 1.56%. Despite fluctuations the afromontane rainforest (Harenna forest), located south of the Bale Mountains, has remained relatively stable. In conclusion this study documents a rapid and ecosystem-specific change of this biodiversity hotspot due to intensified human activities (e.g., deforestation, agriculture, infrastructure expansion). Specifically, the ecotone between the afromontane and the afroalpine area represent a “hotspot of biodiversity loss” today. Taking into consideration the projections of regional climate warming and modified precipitation regimes, LULCC can be expected to become even more intensive in the near future. This is likely to impose unprecedented pressures on the largely endemic biota of the area.


Biodiversity loss Vegetation dynamics Endemism Elevational gradient Land use change Remote sensing Tropical mountains 



We express gratitude to the SPOT Planet Action Program and its partner institutes for the free grant of SPOT satellite images, ArcGIS 9.3.1 software, and ENVI-IDL 4.7 remote sensing software and books. We also acknowledge the financial support for this work from the Rufford Small Grants Foundation.


  1. Admasu, E., Thirgood, S. J., Bekele, A., & Laurenson, M. K. (2004). Spatial ecology of golden jackal in farmland in the Ethiopian Highlands. African Journal of Ecology. doi: 10.1111/j.1365-2028.2004.00497.x.
  2. Alphan, H., Doygun, H., & Unlukaplan, Y. I. (2009). Post-classification comparison of land covers using multitemporal Landsat and ASTER imagery: the case of Kahramanmaraş, Turkey. Environmental Monitoring and Assessment. doi: 10.1007/s10661-008-0274-x.
  3. Amente, G. (2005). Rehabilitation and sustainable use of degraded community forests in the Bale mountains of Ethiopia. Inaugural Dissertation. Faculty of Forest and Environmental Sciences, Albert-Ludwigs-University, Freiburg, Germany.Google Scholar
  4. Amsalu, A., & de Graaff, J. (2006). Farmers views of soil erosion problems and their conservation knowledge at Beressa watershed, central highlands of Ethiopia. Agriculture and Human Values. doi: 10.1007/s10460-005-5872-4.
  5. Atkinson, P. M., Foody, G. M., Gething, P. W., Mathur, A., & Kelly, C. K. (2007). Investigating spatial structure in specific tree species in ancient semi-natural woodland using remote sensing and marked point pattern analysis. Ecography, 30, 88–104. doi: 10.1111/j.0906-7590.2007.04726.x.Google Scholar
  6. Barry, R. G., & Seimon, A. (2000). Research for mountain area development: Climatic fluctuations in the mountains of the Americas and their significance. Ambio, 29(7), 364–370. doi: 10.1579/0044-7447-29.7.364.Google Scholar
  7. Beck, E., & Richter, M. (2008). Ecological aspects of a biodiversity hotspot in the Andes of southern Ecuador. In Gradstein, S. R., Homeier, J., & Gansert, D. (Eds.), The tropical mountain forest patterns and processes in a biodiversity hotspot. Biodiversity and Ecology Series, 2, 7–24.Google Scholar
  8. Bonnefille, R. (1983). Evidence for a cooler and drier climate in the Ethiopian uplands towards 2.5 Mys ago. Nature. doi: 10.1038/303487a0.
  9. Buytaert, W., Cuesta-Camacho, F., & Tobon, C. (2010). Potential impacts of climate change on the environmental services of humid tropical alpine regions. Global Ecology and Biogeography. doi: 10.1111/j.1466-8238.2010.00585.x.
  10. Chiarucci, A., Araujo, M. B., Decocy, G., Beierkuhnlein, C., & Fernandez-Palacios, J. M. (2010). The concept of potential natural vegetation: an epitaph? Journal of Vegetation Science. doi: 10.1111/j.1654-1103.2010.01218.x.
  11. CSA. (2005). Population sample survey. Volume I. Addis Ababa: Federal Democratic Republic of Ethiopia Central Statistical Agency.Google Scholar
  12. CSA. (2007). Statistical abstract 2007. Volume I. Addis Ababa: Federal Democratic Republic of Ethiopia Central Statistical Agency.Google Scholar
  13. CSA. (2009). Agricultural sample survey. Volume I. Addis Ababa: Federal Democratic Republic of Ethiopia Central Statistical Agency.Google Scholar
  14. Darbyshire, I., Lamb, H., & Umer, M. (2003). Forest clearance and regrowth in northern Ethiopia during the last 3000 years. The Holocene. doi: 10.1191/0959683603hl644rp.
  15. Duveiller, G., Defourny, P., Descle’e, B., & Mayaux, P. (2008). Deforestation in Central Africa: Estimates at regional, national and landscape levels by advanced processing of systematically-distributed Landsat extracts. Remote Sensing of Environment. doi: 10.1016/j.rse.2007.07.026.
  16. Elmore, A. J., Mustard, J. F., Manning, S. J., & Lobell, D. B. (2000). Quantifying vegetation change in semiarid environments: Precision and accuracy of spectral mixture analysis and the normalized difference vegetation index. Remote Sensing of Environment. doi: 10.1016/S0034-4257(00)00100-0.
  17. Foley, J. A., DeFries, R., Asner, G. P., Barford, C., Bonan, G., Carpenter, S. R., Chapin, F. S., Coe, M. T., Daily, G. C., Gibbs, H. K., Helkowski, J. H., Holloway, T., Howard, E. A., Kucharik, C. J., Monfreda, C., Patz, J. A., Prentice, I. C., Ramankutty, N., & Snyder, P. K. (2005). Global consequences of land use. Science. doi: 10.1126/science.1111772.
  18. Foody, G. M. (2002). Status of land cover classification accuracy assessment. Remote Sensing of Environment. doi: 10.1016/S0034-4257(01)00295-4.
  19. Friis, I. (1992). Forests and forest trees of northeast tropical Africa. Their natural habitats and distribution patterns in Ethiopia, Djibouti and Somalia. Kew Bull Additional Series 15, HMSO, London.Google Scholar
  20. Galvin, K. A., Boone, R. B., Smith, N. M., & Lynn, S. J. (2001). Impacts of climate variability on East African pastoralists: Linking social science and remote sensing. Climate Research. doi: 10.3354/cr019161.
  21. Gebregziabher, T. (1988). Vegetation and environment of the mountains of Ethiopia: Implications for utilization and conservation. Mountain Research and Development, 8(2/3), 211–216.CrossRefGoogle Scholar
  22. Gebregziabher, T. (1991). Management of mountain environments and genetic erosion in tropical mountain systems: The Ethiopian example. Mountain Research and Development, 11(3), 225–230.CrossRefGoogle Scholar
  23. Getahun, A. (1984). Stability and instability of mountain ecosystems in Ethiopia. Mountain Research and Development, 4(1), 39–44.CrossRefGoogle Scholar
  24. Grepperud, S. (1996). Population pressure and land degradation: The case of Ethiopia. Journal of Environmental Economics and Management. doi: 10.1006/jeem.1996.0002.
  25. Hagedorn, F., Mulder, J., & Jandl, R. (2010). Mountain soils under a changing climate and land-use. Biogeochemistry. doi: 10.1007/s10533-009-9386-9.
  26. Hannah, L., Midgley, G. F., & Miller, D. (2002). Climate change-integrated conservation strategies. Global Ecology and Biogeography. doi: 10.1046/j.1466-822X.2002.00306.x.
  27. Hedberg, O. (1964). Feature of afroalpine plant ecology. Uppsala: Almquist & Wiksells Boktryckeri.Google Scholar
  28. Hillman, J. C. (1986). Conservation in Ethiopia’s bale mountains. Endangered Species, 3, 1–4.Google Scholar
  29. Hillman, J. C. (1988). The Bale Mountains National Park area, southeast Ethiopia, and its management. Mountain Research and Development, 8(2/3), 253–258.CrossRefGoogle Scholar
  30. Hillmann, J. C. (1990). The Bale Mountains National Park area, southeastern Ethiopia, and its management. In B. Messerli & H. Hurni (Eds.), African mountains and highlands: Problems and perspectives (pp. 277–286). Missouri: Walsworth Press: The African Mountain Association (AMA).Google Scholar
  31. Jentsch, A., & Beierkuhnlein, C. (2003). Global climate change and local disturbance regimes as interacting drivers for shifting altitudinal vegetation patterns. Erdkunde, 57, 216–231.CrossRefGoogle Scholar
  32. Jentsch, A., & Beierkuhnlein, C. (2008). Research frontiers in climate change: Effects of extreme meteorological events on ecosystems. CR Geoscience, 340, 621–628. doi: 10.1016/j.crte.2008.07.002.CrossRefGoogle Scholar
  33. Jentsch, A., Beierkuhnlein, C., & White, P. S. (2002). Scale, the dynamic stability of forest ecosystems, and the persistence of biodiversity. Silva Fennica, 36(1), 393–400.Google Scholar
  34. Khan, S., Tariq, R., Yuanlai, C., & Blackwell, J. (2006). Can irrigation be sustainable? Agricultural Water Management. doi: 10.1016/j.agwat.2005.07.006.
  35. Körner, C. (1999). Alpine plant life. Berlin: Springer Verlag.CrossRefGoogle Scholar
  36. Kreyling, J., Wana, D., & Beierkuhnlein, C. (2010). Potential consequences of climate warming for tropical plant species in high mountains of southern Ethiopia. Diversity and Distributions. doi: 10.1111/j.1472-4642.2010.00675.x.
  37. Laurenson, K., Sillero-Zubiri, C., Thompson, H., Shiferaw, F., Thirgood, S., & Malcolm, J. (1998). Disease as a threat to endangered species: Ethiopian wolves, domestic dogs and canine pathogens. Animal Conservation. doi: 10.1111/j.1469-1795.1998.tb00038.x.
  38. Lovejoy, T. E., & Hannah, L. (2005). Climate change and biodiversity. New Haven: Yale University Press.Google Scholar
  39. Lu, D., Mausel, P., Brondizio, E., & Moran, E. (2004). Change detection techniques: A review. International Journal of Remote Sensing. doi: 10.1080/0143116031000139863.
  40. Messerli, B., Hurni, H., Woldesemait, B., Tedla, S., Ives, J. D., & Woldemariam, M. (1990). African mountains and highlands: An introduction. In B. Messerli & H. Hurni (Eds.), African mountains and highlands: Problems and perspectives (pp. 7–15). Missouri: Walsworth Press: The African Mountain Association (AMA).Google Scholar
  41. Miehe, G., & Miehe, S. (1994). Ericaceous forests and heathlands in the Bale Mountains of South Ethiopia: Ecology and man’s impact. Hamburg: Stiftung Walderhaltung in Afrika.Google Scholar
  42. MEA. (2005a). Ecosystems and human well-being: Biodiversity synthesis. Washington: World Resources Institute.Google Scholar
  43. MEA. (2005b). Status and trends in mountain systems. Washington: World Resources Institute.Google Scholar
  44. Mohamed-Saleem, M. A., & Woldu, Z. (2002). Land use and biodiversity in the upland pastures in Ethiopia. In C. Körner & E. M. Spehn (Eds.), Mountain biodiversity: A global assessment (pp. 277–282). Midsomer Norton: The Parthenon Publishing Group.Google Scholar
  45. Nagy, L., & Grabherr, G. (2009). The biology of alpine habitats. Oxford: Oxford University Press.Google Scholar
  46. National Biodiversity Strategy and Action Plan (NBSAP). (2005). Democratic Republic of Ethiopia. Institute of Biodiversity Conservation. Addis Ababa. Ethiopia. Accessed 20 Mar 2010.
  47. Nogues-Bravoa, D., Araujo, M. B., Erread, M. P., & Martınez-Rica, J. P. (2007). Exposure of global mountain systems to climate warming during the 21st century. Global Environmental Change. doi: 10.1016/j.gloenvcha.2006.11.007.
  48. Olson, J. M., Alagarswamy, G., Andresen, J. A., Campbell, D. J., Davis, A. Y., Ge, J., Huebner, M., Lofgren, B. M., Lusch, D. P., Nathan, J., Moore, N. J., Pijanowski, B. C., Qi, J., Thornton, P. K., Torbick, N. M., & Wang, J. (2008). Integrating diverse methods to understand climate–land interactions in East Africa. Geoforum. doi: 10.1016/j.geoforum.2007.03.011.
  49. Osmaston, H. A., Mitchell, W. A., & Osmaston, J. A. N. (2005). Quaternary glaciation of the Bale Mountains. Ethiopia. Journal of Quaternary Science. doi: 10.1002/jqs.931.
  50. Reid, R. S., Kruska, R. L., Muthui, N., Taye, A., Wotton, S., Wilson, C. J., & Mulatu, W. (2000). Land-use and land-cover dynamics in response to changes in climatic, biological and socio-political forces: The case of southwestern Ethiopia. Landscape Ecology. doi: 10.1023/A:1008177712995.
  51. Rockström, J., Steffen, W., Noone, K., Persson, Å., Chapin, F. S., Lambin, E. F., Lenton, T. M., Scheffer, M., Folke, C., Schellnhuber, H. J., Nykvist, B., de Wit, C. A., Hughes, T., van der Leeuw, S., Rodhe, H., Sörlin, S., Snyder, P. K., Costanza, R., Svedin, U., Falkenmark, M., Karlberg, L., Corell, R. W., Fabry, V. J., Hansen, J., Walker, B., Liverman, D., Richardson, K., Crutzen, P., & Foley, J. A. (2009). A safe operating space for humanity. Nature. doi: 10.1038/461472a.
  52. Röder, A., Stellmes, M., Hill, J., Kuemmerle, T., & Tsiourlis, G. M. (2008). Analysing land cover change using time series analysis of Landsat data and geoinformation processing. A natural experiment in Northern Greece. Remote Sensing for Agriculture, Ecosystems, and Hydrology 10: Proceedings of SPIE: International Society for Optics and Photonics 7104, 710409, doi: 10.1117/12.800265
  53. Sala, O. E., Chapin, F. S., Armesto, J. J., Berlow, E., Bloompeld, J., Dirzo, R., Huber-Sanwald, E., Huenneke, L. F., Jackson, R. B., Kinzig, A., Leemans, R., Lodge, D. M., Mooney, H. A., Oesterheld, M., Poff, N. L., Sykes, M. T., Walker, B. H., Walker, M., & Wall, D. H. (2000). Global biodiversity scenarios for the year 2100. Science. doi: 10.1126/science.287.5459.1770.
  54. Senbeta, F., & Denich, M. (2006). Effects of wild coffee management on species diversity in the afromontane rainforests of Ethiopia. Forest Ecology and Management. doi: 10.1016/j.foreco.2006.05.064.
  55. Sillero-Zubiri, C., & Macdonald, D. W. (1997). The Ethiopian wolf: Status survey and conservation action plan. Gland: IUCN Canid Specialist Group.Google Scholar
  56. Stephens, P. A., d’Sa, C. A., Sillero-Zubiri, C., & Leader-Williams, N. (2001). Impact of livestock and settlement on the large mammalian wildlife of Bale Mountains National Park, Southern Ethiopia. Biological Conservation, 100, 307–322. doi: 10.1016/S0006-3207(01)00035-0.CrossRefGoogle Scholar
  57. Taddese, G. (2001). Land degradation: A challenge to Ethiopia. Environmental Management. doi: 10.1007/s002670010190.
  58. Tesfaye, G., Teketay, D., Assefa, Y., & Fetene, M. (2004). The impact of fire on the soil seed bank and regeneration of Harenna Forest. Southeastern Ethiopia. Mountain Research and Development. doi: 10.1659/0276-4741(2004)024[0354:TIOFOT]2.0.CO;2.
  59. Turner, B. L., Lambin, E. F., & Reenberg, A. (2007). The emergence of land change science for global environmental change and sustainability. PNAS. doi: 10.1073/pnas.0704119104.
  60. Uhlig, S. K. (1990). Mountain forests and the upper tree limit on the southeastern plateau of Ethiopia. In B. Messerli & H. Hurni (Eds.), African mountains and highlands: Problems and perspectives (pp. 237–248). Missouri: Walsworth Press: The African Mountain Association (AMA).Google Scholar
  61. Uhlig, S. K., & Uhlig, K. (1991). Mountain chronicles. Studies on the altitudinal zonation of forests and alpine plants in the central Bale Mountains, Ethiopia. Mountain Research and Development, 11(2), 153–256.CrossRefGoogle Scholar
  62. United States Geological Survey (USGS) 2009. Landsat Archieve. Landsat standard data products. Accessed 20 Sept 2010.
  63. Umer, M., Lamb, H. F., Bonnefille, R., Lezine, A. M., Tiercelin, J. J., Gibert, E., Cazet, J. P., & Watrin, J. (2007). Late Pleistocene and Holocene vegetation history of the Bale Mountains, Ethiopia. Quaternary Science Review. doi: 10.1016/j.quascirev.2007.05.004.
  64. Wana, D., & Beierkuhnlein, C. (2011). Responses of plant functional types to environmental gradients in the south-west Ethiopian highlands. Journal of Tropical Ecology, 27, 289–304. doi: 10.1017/S0266467410000799.CrossRefGoogle Scholar
  65. Wesche, K. (2003). The importance of occasional droughts for afroalpine landscape ecology. Journal of Tropical Ecology, 19, 197–208. doi: 10.1017/S0266467403003225.CrossRefGoogle Scholar
  66. Wesche, K., Miehe, G., & Kaeppeli, M. (2000). The significance of fire for Afroalpine ericaceous vegetation. Mountain Research and Development. doi: 10.1659/0276-4741(2000)020[0340:TSOFFA]2.0.CO;2.
  67. Wickware, G. M., & Howarth, P. J. (1981). Change detection in the Peace-Athabasca Delta using digital Landsat data. Remote Sensing of Environment. doi: 10.1016/0034-4257(81)90003-1.
  68. Woldemariam, M. (1990). An assessment of stress and strain on the Ethiopian highlands. In B. Messerli & H. Hurni (Eds.), African mountains and highlands: Problems and perspectives (pp. 289–297). Missouri: Walsworth Press: The African Mountain Association (AMA).Google Scholar
  69. Woldu, Z., Feoli, E., & Nigatu, L. (1989). Partitioning an elevation gradient of vegetation from south-eastern Ethiopia by probabilistic methods. Vegetatio. doi: 10.1007/BF00045524.
  70. Yimer, F., Messing, I., Ledin, S., & Abdelkadir, A. (2008). Effects of different land use types on infiltration capacity in a catchment in the highlands of Ethiopia. Soil Use and Management. doi: 10.1111/j.1475-2743.2008.00182.x.

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Yohannes Kidane
    • 1
  • Reinhold Stahlmann
    • 1
  • Carl Beierkuhnlein
    • 1
  1. 1.Department of BiogeographyUniversity of BayreuthBayreuthGermany

Personalised recommendations