Skip to main content

Advertisement

Log in

Recharge signal identification based on groundwater level observations

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

This study applied a method of the rotated empirical orthogonal functions to directly decompose the space–time groundwater level variations and determine the potential recharge zones by investigating the correlation between the identified groundwater signals and the observed local rainfall records. The approach is used to analyze the spatiotemporal process of piezometric heads estimated by Bayesian maximum entropy method from monthly observations of 45 wells in 1999–2007 located in the Pingtung Plain of Taiwan. From the results, the primary potential recharge area is located at the proximal fan areas where the recharge process accounts for 88% of the spatiotemporal variations of piezometric heads in the study area. The decomposition of groundwater levels associated with rainfall can provide information on the recharge process since rainfall is an important contributor to groundwater recharge in semi-arid regions. Correlation analysis shows that the identified recharge closely associates with the temporal variation of the local precipitation with a delay of 1–2 months in the study area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bergamino, N., Loiselle, S. A., Cozar, A., Dattilo, A. M., Bracchini, L., & Rossi, C. (2007). Examining the dynamics of phytoplankton biomass in lake Tanganyika using empirical orthogonal functions. Ecological Modelling, 204, 156–162.

    Article  Google Scholar 

  • Bouwer, H. (2002). Artificial recharge of groundwater: Hydrogeology and engineering. Hydrogeology Journal, 10, 121–142.

    Article  CAS  Google Scholar 

  • Braun, G. M., Levine, N. S., Roberts, S. J., & Samel, A. N. (2003). A geographic information systems methodology for the identification of groundwater recharge areas in Waukesha County, Wisconsin. Environmental and Engineering Geoscience, 9, 267–278.

    Article  Google Scholar 

  • Brito-Castillo, L., Douglas, A. V., Leyva-Contreras, A., & Lluch-Belda, D. (2003). The effect of large-scale circulation on precipitation and streamflow in the Gulf of California continental watershed. International Journal of Climatology, 23, 751–768.

    Article  Google Scholar 

  • Chowdhury, A., Jha, M. K., Chowdary, V. M., & Mal, B. C. (2009). Integrated remote sensing and GIS-based approach for assessing groundwater potential in West Medinipur district, West Bengal, India. International Journal of Remote Sensing, 30, 231–250.

    Article  Google Scholar 

  • Christakos, G. (2000). Modern spatiotemporal geostatistics (p. 304). New York: Oxford University Press.

    Google Scholar 

  • Christakos, G. (2009). Epistematics: An evolutionary framework of real world problem-solving. New York: Springer.

    Google Scholar 

  • Christakos, G., & Hristopulos, D. T. (1998). Spatiotemporal environmental health modelling: A tractatus stochasticus (p. xviii). Boston: Kluwer. 400 pp.

    Google Scholar 

  • Christakos, G., Bogaert, P., & Serre, M. L. (2002). Temporal GIS: Advanced functions for field-based applications (p. 220). New York: Springer.

    Google Scholar 

  • Christakos, G., Olea, R. A., Serre, M. L., Yu, H.-L., & Wang, L. (2005). Interdisciplinary public health reasoning and epidemic modelling: The case of Black Death. New York: Springer.

    Google Scholar 

  • Christophersen, N., & Hooper, R. P. (1992). Multivariate-analysis of stream water chemical-data—The use of principal components-analysis for the end-member mixing problem. Water Resources Research, 28, 99–107.

    Article  CAS  Google Scholar 

  • Chu, H. J., Chang, L. C., Lin, Y. P., Wang, Y. C., & Chen, Y. W. (2010). Application of system dynamics on shallow multipurpose artificial lakes: A case study of detention pond at Tainan, Taiwan. Environmental Modeling and Assessment, 15, 211–221.

    Article  Google Scholar 

  • Crosbie, R. S., Binning, P., & Kalma, J. D. (2005). A time series approach to inferring groundwater recharge using the water table fluctuation method. Water Resources Research, 41, 1–9.

    Article  Google Scholar 

  • Dai, A. G., Trenberth, K. E., & Qian, T. T. (2004). A global dataset of Palmer Drought Severity Index for 1870–2002: Relationship with soil moisture and effects of surface warming. Journal of Hydrometeorology, 5, 1117–1130.

    Article  Google Scholar 

  • Dillon, P. (2005). Future management of aquifer recharge. Hydrogeology Journal, 13, 313–316.

    Article  Google Scholar 

  • Freeze, R. A., & Cherry, J. A. (1979). Groundwater, xvi, 604 pp. Prentice-Hall, Englewood Cliffs, NJ.

  • Gehrels, H., Peters, N. E., Hoehn, E., Jensen, K., Leibundgut, C., Griffioen, J., Webb, B., & Zaadnoordijk, W. J. (Eds.) (2001). Impact of human activity on groundwater dynamics. IAHS Publication no. 269.

  • Hannachi, A., Jolliffe, I. T., & Stephenson, D. B. (2007). Empirical orthogonal functions and related techniques in atmospheric science: A review. International Journal of Climatology, 27, 1119–1152.

    Article  Google Scholar 

  • Hisdal, H., & Tallaksen, L. M. (2003). Estimation of regional meteorological and hydrological drought characteristics: A case study for Denmark. Journal of Hydrology, 281, 230–247.

    Article  Google Scholar 

  • Hisdal, H., & Tveito, O. E. (1992). Generation of runoff series at ungauged locations using empirical orthogonal functions in combination with kriging. Stochastic Hydrology and Hydraulics, 6, 255–269.

    Article  Google Scholar 

  • Hooper, R. P., Christophersen, N., & Peters, N. E. (1990). Modeling streamwater chemistry as a mixture of soilwater end-members—An application to the Panola mountain catchment, Georgia, USA. Journal of Hydrology, 116, 321–343.

    Article  CAS  Google Scholar 

  • Hsu, K. C., Wang, C. H., Chen, K. C., Chen, C. T., & Ma, K. W. (2007). Climate-induced hydrological impacts on the groundwater system of the Pingtung Plain, Taiwan. Hydrogeology Journal, 15, 903–913.

    Article  Google Scholar 

  • Jaiswal, R. K., Mukherjee, S., Krishnamurthy, J., & Saxena, R. (2003). Role of remote sensing and GIS techniques for generation of groundwater prospect zones towards rural development—An approach. International Journal of Remote Sensing, 24, 993–1008.

    Article  Google Scholar 

  • Jha, M. K., Chowdhury, A., Chowdary, V. M., & Peiffer, S. (2007). Groundwater management and development by integrated remote sensing and geographic information systems: Prospects and constraints. Water Resources Management, 21, 427–467.

    Article  Google Scholar 

  • Karl, T. R., Koscielny, A. J., & Diaz, H. F. (1982). Potential errors in the application of principal component (eigenvector) analysis to geophysical-data. Journal of Applied Meteorology, 21, 1183–1186.

    Article  Google Scholar 

  • Kruger, A., Ulbrich, U., & Speth, P. (2001). Groundwater recharge in Northrhine-Westfalia predicted by a statistical model for greenhouse gas scenarios. Physics and Chemistry of the Earth Part B—Hydrology Oceans and Atmosphere, 26, 853–861.

    Article  Google Scholar 

  • Longuevergne, L., Florsch, N., & Elsass, P. (2007). Extracting coherent regional information from local measurements with Karhunen-Loeve transform: Case study of an alluvial aquifer (Rhine valley, France and Germany). Water Resources Research, 43, W04430.

    Article  Google Scholar 

  • McPhee, J., & Yeh, W. W. G. (2008). Groundwater management using model reduction via empirical orthogonal functions. Journal of Water Resources Planning and Management—ASCE, 134, 161–170.

    Article  Google Scholar 

  • Mondal, N. C., & Singh, V. S. (2004). A new approach to delineate the groundwater recharge zone in hard rock terrain. Current Science, 87, 658–662.

    Google Scholar 

  • Moon, S. K., Woo, N. C., & Lee, K. S. (2004). Statistical analysis of hydrographs and water-table fluctuation to estimate groundwater recharge. Journal of Hydrology, 292, 198–209.

    Article  Google Scholar 

  • Munoz, B., Lesser, V. M., & Ramsey, F. L. (2008). Design-based empirical orthogonal function model for environmental monitoring data analysis. Environmetrics, 19, 805–817.

    Article  Google Scholar 

  • North, G. R. (1984). Empirical orthogonal functions and normal modes. Journal of the Atmospheric Sciences, 41, 879–886.

    Article  Google Scholar 

  • Rimon, Y., Dahan, O., Nativ, R., & Geyer, S. (2007). Water percolation through the deep vadose zone and groundwater recharge: Preliminary results based on a new vadose zone monitoring system. Water Resources Research, 43, W05402.

    Article  Google Scholar 

  • Saraf, A. K., & Choudhury, P. R. (1998). Integrated remote sensing and GIS for groundwater exploration and identification of artificial recharge sites. International Journal of Remote Sensing, 19, 1825–1841.

    Article  Google Scholar 

  • Saraf, A. K., Choudhury, P. R., Roy, B., Sarma, B., Vijay, S., & Choudhury, S. (2004). GIS based surface hydrological modelling in identification of groundwater recharge zones. International Journal of Remote Sensing, 25, 5759–5770.

    Article  Google Scholar 

  • Scanlon, B. R., Healy, R. W., & Cook, P. G. (2002). Choosing appropriate techniques for quantifying groundwater recharge. Hydrogeology Journal, 10, 18–39.

    Article  CAS  Google Scholar 

  • Shaban, A., Khawlie, M., & Abdallah, C. (2006). Use of remote sensing and GIS to determine recharge potential zones: The case of Occidental Lebanon. Hydrogeology Journal, 14, 433–443.

    Article  Google Scholar 

  • Sophocleous, M. A. (1991). Combining the soilwater balance and water-level fluctuation methods to estimate natural groundwater recharge: Practical aspects. Journal of Hydrology, 124, 229–241.

    Article  Google Scholar 

  • Ting, C. S., Kerh, T., & Liao, C. J. (1998). Estimation of groundwater recharge using the chloride mass-balance method, Pingtung Plain, Taiwan. Hydrogeology Journal, 6, 282–292.

    Article  Google Scholar 

  • van Doren, J. F. M., Markovinovic, R., & Jansen, J. D. (2006). Reduced-order optimal control of water flooding using proper orthogonal decomposition. Computational Geosciences, 10, 137–158.

    Article  Google Scholar 

  • Vermeulen, P. T. M., Heemink, A. W., & Stroet, C. B. M. T. (2004). Reduced models for linear groundwater flow models using empirical orthogonal functions. Advances in Water Resources, 27, 57–69.

    Article  Google Scholar 

  • Wear, B. C., & Nasstrom, J. N. (1982). Examples of extended empirical orthogonal function analysis. Monthly Weather Review, 110, 481–485.

    Article  Google Scholar 

  • Xu, C. C., Chen, Y. N., Hamid, Y., Tashpolat, T., Chen, Y. P., Ge, H. T., et al. (2009). Long-term change of seasonal snow cover and its effects on river runoff in the Tarim River basin, northwestern China. Hydrological Processes, 23, 2045–2055.

    Article  Google Scholar 

  • Yeh, M. S., Lin, Y. P., & Chang, L. C. (2006). Designing an optimal multivariate geostatistical groundwater quality monitoring network using factorial kriging and genetic algorithms. Environmental Geology, 50, 101–121.

    CAS  Google Scholar 

  • Yeh, H. F., Lee, C. H., Hsu, K. C., & Chang, P. H. (2009). GIS for the assessment of the groundwater recharge potential zone. Environmental Geology, 58, 185–195.

    Google Scholar 

  • Yu, H. L., & Chu, H. J. (2010). Understanding space–time patterns of groundwater system by empirical orthogonal functions: A case study in the Choshui River alluvial fan, Taiwan. Journal of Hydrology, 381, 239–247.

    Article  Google Scholar 

Download references

Acknowledgement

This research is supported by a grant from the National Science Council of Taiwan (NSC100-2628-E-002-005-) and National Cheng Kung University. We thank the Water Resources Agency, Taiwan for providing the monitoring data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hone-Jay Chu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, HL., Chu, HJ. Recharge signal identification based on groundwater level observations. Environ Monit Assess 184, 5971–5982 (2012). https://doi.org/10.1007/s10661-011-2394-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-011-2394-y

Keywords

Navigation