Environmental Monitoring and Assessment

, Volume 184, Issue 10, pp 5957–5970 | Cite as

Characteristics and sources of non-methane hydrocarbons and halocarbons in wintertime urban atmosphere of Shanghai, China



The characteristics and sources of major hydrocarbons and halocarbons in the wintertime ambient air of urban center of Shanghai, a mega city of China, were investigated. Propane, toluene, ethyl acetate, and benzene were the most abundant hydrocarbons. The majority of species showed significant variability in mixing ratios with occasional episodic increases. The more common use of liquefied petroleum gas fuel for taxis and light motorcycles was believed to lead to high levels of ambient propane over the urban center of Shanghai. Correlating with toluene, dichloromethane, and 1,2-dichloroethane (1,2-DCE), abundant chloromethane (up to a daily mean of 1.61 ± 0.99 ppbv and a maximum of 5.34 ppbv) was mainly associated with industrial emissions, although biomass burnings exist widely in east China. The Chinese New Year (CNY) holiday period with no industrial activity over China provides a platform for the study of industrial emissions over the urban atmosphere of Shanghai. The normal weekly cycles were characterized by higher and more variable mixing ratios during weekdays which dropped during weekends. Enhanced mixing ratios were observed in the fortnight before the CNY holidays due to increased industrial emissions as a result of overtime production to make up for the holiday losses. During the CNY holidays, lower level and less variable mixing ratios were observed. A benzene/toluene (B/T) ratio of 0.6 ± 0.4 (mean ± std.) for the morning rush hour samples was identified to be the characteristic ratio of vehicular emissions. However, a B/T ratio of 0.4 ± 0.2 from vehicles and other sources was derived for the ambient air.


NMHCs Halocarbon Mixing ratio Source Shanghai 



This work is supported by the National Natural Science Foundation of China (NSFC, grant nos. 40705046, 40975078, and 40875075), Chinese Meteorological Administration (CMA, grant nos. FY-3YF 2006–056, and GYHY-QX 2007-6-19), Institute of Desert Meteorology/CMA (grant no. Sqj2005006), Guangdong Natural Science Foundation (grant no. 8251027501000002), and the Fundamental Research Funds for the Central Universities (grant no. 2010380003161542).


  1. Andreae, M. O., & Merlet, P. (2001). Emission of trace gases and aerosols from biomass burning. Global Biogeochemical Cycles, 15, 955–966.CrossRefGoogle Scholar
  2. Atlas, E., Schauffler, S. M., Merrill, J. T., Hahn, C. J., Ridley, B., Walega, J., et al. (1992). Alkyl nitrate and selected halocarbon measurements at Mauna Loa Observatory, Hawaii. Journal of Geophysical Research, 97, 10331–10348.CrossRefGoogle Scholar
  3. Baker, A. K., Beyersdorf, A. J., Doezema, L. A., Katzenstein, A., Meinardi, S., Simpson, I. J., et al. (2008). Measurements of nonmethane hydrocarbons in 28 United States cities. Atmospheric Environment, 42, 170–182.CrossRefGoogle Scholar
  4. Barletta, B., Meinardi, S., Sherwood Rowland, F., Chan, C. Y., Wang, X. M., Zou, S. C., et al. (2005). Volatile organic compounds in 43 Chinese cities. Atmospheric Environment, 39, 5979–5990.CrossRefGoogle Scholar
  5. Barletta, B., Meinardi, S., Simpson, I. J., Sherwood Rowland, F., Chan, C. Y., Wang, X. M., et al. (2006). Ambient halocarbon mixing ratios in 45 Chinese cities. Atmospheric Environment, 40, 7706–7719.CrossRefGoogle Scholar
  6. Barletta, B., Meinardi, S., Simpson, I. J., Zou, S. C., Sherwood Rowland, F., & Blake, D. R. (2008). Ambient mixing ratios of nonmethane hydrocarbons (NMHCs) in two major urban centers of the Pearl River Delta (PRD) region: Guangzhou and Dongguan. Atmospheric Environment, 42, 4393–4408.CrossRefGoogle Scholar
  7. Barletta, B., Meinardi, S., Simpson, I. J., Atlas, E. L., Beyersdorf, A. J., Baker, A. K., et al. (2009). Characterization of volatile organic compounds (VOCs) in Asian and north American pollution plumes during INTEX-B: identification of specific Chinese air mass tracers. Atmospheric Chemistry and Physics, 9, 5371–5388.CrossRefGoogle Scholar
  8. Bayliss, D. L., Chen, C., Jarabek, A., Sonawane, B., & Valcovic, L. (1998). Carcinogenic effects of benzene: an update. Washington, DC: U.S, Environmental Protection Agency.Google Scholar
  9. Blake, D. R., & Rowland, F. S. (1995). Urban leakage of liquefied petroleum gas and its impact on Mexico City Air Quality. Science, 269, 953–956.CrossRefGoogle Scholar
  10. Blake, N. J., Blake, D. R., Sive, B. C., Chen, T. Y., Rowland, F. S., Collins, J. E., Jr., et al. (1996). Biomass burning emissions and vertical distribution of atmospheric methyl halides and other reduced carbon gases in the South Atlantic region. Journal of Geophysical Research, 101, 24,151–24,164.Google Scholar
  11. Blake, N. J., Blake, D. R., Chen, T. Y., Collins, J. E., Jr., Sachse, G. W., Anderson, B. E., et al. (1997). Distribution and seasonality of selected hydrocarbons and halocarbons over the western Pacific basin during PEM-West A and PEM-West B. Journal of Geophysical Research, 102(D23), 28, 315–28, 328.CrossRefGoogle Scholar
  12. Blake, N. J., Blake, D. R., Simpson, I. J., Meinardi, S., Swanson, A. L., Lopez, J. P., et al. (2003). NMHCs and halocarbons in Asian continental outflow during the transport and chemical evolution over the Pacific (TRACE-P) Field Campaign: Comparison with PEM-West B. Journal of Geophysical Research, 108, 8806. doi: 10.1029/2002JD003367.CrossRefGoogle Scholar
  13. Borbon, A., Locoge, N., Veillerot, M., Galloo, J. C., & Guillermo, R. (2002). Characterisation of NMHCs in a French urban atmosphere: overview of the main sources. Science of the Total Environment, 292, 177–191.CrossRefGoogle Scholar
  14. Chan, C. Y., Chan, L. Y., Wang, X. M., Liu, Y. M., Lee, S. C., Zou, S. C., et al. (2002). Volatile organic compounds in roadside microenvironments of metropolitan Hong Kong. Atmospheric Environment, 36, 2039–2047.CrossRefGoogle Scholar
  15. Chan, C. Y., Tang, J. H., Li, Y. S., & Chan, L. Y. (2006). Mixing ratios and sources of halocarbons in urban, semi-urban and rural sites of the Pearl River Delta, South China. Atmospheric Environment, 40, 7331–7345.CrossRefGoogle Scholar
  16. Chen, T., Chen, T. Y., Simpson, I. J., Blake, D. R., & Rowland, F. S. (2001). Impact of the leakage of liquefied petroleum gas (LPG) on Santiago Air Quality. Geophysical Research Letters, 28, 2193–2196.CrossRefGoogle Scholar
  17. Chen, M. H., Li, D., & Chen, C. H. (2003). Survey and analysis on the status quo of fine particulates pollution in Shanghai. Shanghai Environmental Sciences, 22, 1038–1041.Google Scholar
  18. Cheng, J., Yuan, T., Wu, Q., Zhao, W., Xie, H., Ma, Y., et al. (2007). PM10-bound polycyclic aromatic hydrocarbons (PAHs) and cancer risk estimation in the atmosphere surrounding an industrial area of Shanghai, China. Water, Air, and Soil Pollution, 183, 437–446.CrossRefGoogle Scholar
  19. Clark, A. I., McIntyre, A. E., Perry, R., & Lester, J. N. (1984). Monitoring and assessment of ambient atmospheric concentrations of aromatic and halogenated hydrocarbons at urban, rural and motorway locations. Environmental Pollution Series B, Chemical and Physical, 7, 141–158.CrossRefGoogle Scholar
  20. de Gouw, J. A. (2004). Chemical composition of air masses transported from Asia to the US West Coast during ITCT 2K2: fossil fuel combustion versus biomass-burning signatures. Journal of Geophysical Research, 109. doi: 10.1029/2003JD004202.
  21. Derwent, R. G., Davies, T., Delaney, M., Dollard, G. J., Field, R. A., Dumitrean, P., et al. (2000). Analysis and interpretation of the continuous hourly monitoring data for 26 C2-C8 hydrocarbons at 12 United Kingdom sites during 1996. Atmospheric Environment, 34, 297–312.CrossRefGoogle Scholar
  22. Geng, F. H., Zhao, C. S., Tang, X., Lu, G. L., & Tie, X. X. (2007). Analysis of ozone and VOCs measured in Shanghai: a case study. Atmospheric Environment, 41, 989–1001.CrossRefGoogle Scholar
  23. Geng, F. H., Tie, X. X., Xu, J. M., Zhou, G. Q., Peng, L., Gao, W., et al. (2008). Characterizations of ozone, NOx, and VOCs measured in Shanghai, China. Atmospheric Environment, 42, 6873–6883.CrossRefGoogle Scholar
  24. Geng, F. H., Cai, C. J., Tie, X. X., Yu, Q., An, J. L., Peng, L., et al. (2009). Analysis of VOC emissions using PCA/APCS receptor model at city of Shanghai, China. Journal of Atmospheric Chemistry, 62, 229–247.CrossRefGoogle Scholar
  25. Gu, Y. G., Lu, S. L., Gu, J. Z., Chen, X. H., Fan, R., & Chen, Z. H. (2006). Analyses on time-space distributions and correlations of NO2, SO2 and PM10 in air in urban and suburb areas of Shanghai. Shanghai Environmental Sciences, 227, 201–205.Google Scholar
  26. Guo, H., So, K. L., Simpson, I. J., Barletta, B., Meinardi, S., & Blake, D. R. (2007). C1-C8 volatile organic compounds in the atmosphere of Hong Kong: overview of atmospheric processing and source apportionment. Atmospheric Environment, 41, 1456–1472.CrossRefGoogle Scholar
  27. Ho, D. T., Schlosser, P., SmethieJr, W. M., & Simpson, H. J. (1998). Variability in atmospheric chlorofluorocarbons (CCl3F and CCl2F2) near a large urban area: implications for groundwater dating. Environmental Science and Technology, 32, 2377–2382.CrossRefGoogle Scholar
  28. Huang, J., Feng, Y., Li, J., Xiong, B., Feng, J., Wen, S., et al. (2008). Characteristics of carbonyl compounds in ambient air of Shanghai, China. Journal of Atmospheric Chemistry, 61, 1–20.CrossRefGoogle Scholar
  29. Hurst, D. F., Bakwin, P. S., & Elkins, J. W. (1998). Recent trends in the variability of halogenated trace gases over the United States. Journal of Geophysical Research, 103, 25299–25306. doi: 10.1029/98JD01879.CrossRefGoogle Scholar
  30. Jaimes, L., & Sandoval, J. (2002). Propane and butane emission sources to ambient air of Mexico City metropolitan area. Science of the Total Environment, 289, 243–247.CrossRefGoogle Scholar
  31. Lai, C.-H., Chang, C.-C., Wang, C.-H., Shao, M., Zhang, Y., & Wang, J.-L. (2009). Emissions of liquefied petroleum gas (LPG) from motor vehicles. Atmospheric Environment, 43, 1456–1463.CrossRefGoogle Scholar
  32. Li, H., Feng, J., Sheng, G., Lü, S., Fu, J., Peng, P., et al. (2008). The PCDD/F and PBDD/F pollution in the ambient atmosphere of Shanghai, China. Chemosphere, 70, 576–583.CrossRefGoogle Scholar
  33. Liu, C. M., Xu, Z. L., Du, Y. G., & Guo, H. C. (2000). Analyses of volatile organic compounds concentrations and variation trends in the air of Changchun, the northeast of China. Atmospheric Environment, 34, 4459–4466.CrossRefGoogle Scholar
  34. McCulloch, A., Aucott, M. L., Benkovitz, C. M., Graedel, T. E., Kleiman, G., Midgley, P. M., et al. (1999). Global emissions of hydrogen chloride and chloromethane from coal combustion, incineration and industrial activities: reactive chlorine emissions inventory. Journal of Geophysical Research, 104, 8391–8403.CrossRefGoogle Scholar
  35. Na, K., & Kim, Y. P. (2001). Seasonal characteristics of ambient volatile organic compounds in Seoul, Korea. Atmospheric Environment, 35, 2603–2614.CrossRefGoogle Scholar
  36. Perry, R., & Gee, I. L. (1995). Vehicle emissions in relation to fuel composition. Science of the Total Environment, 169, 149–156.CrossRefGoogle Scholar
  37. Ran, L., Zhao, C. S., Geng, F. H., Tie, X. X., Tang, X., Peng, L., et al. (2009). Ozone photochemical production in urban Shanghai, China: analysis based on ground level observations. Journal of Geophysical Research, 114, D15301. doi: 10.1029/2008JD010752.CrossRefGoogle Scholar
  38. Rivett, A. C., Martin, D., Nickless, G., Simmonds, P. G., O'Doherty, S. J., Gray, D. J., et al. (2003). In situ gas chromatographic measurements of halocarbons in an urban environment. Atmospheric Environment, 37, 2221–2235.CrossRefGoogle Scholar
  39. Russo, R. S., Zhou, Y., White, M. L., Mao, H., Talbot, R., & Sive, B. C. (2010). Multi-year (2004–2008) record of nonmethane hydrocarbons and halocarbons in New England: seasonal variations and regional sources. Atmospheric Chemistry and Physics, 10, 4909–4929.CrossRefGoogle Scholar
  40. Sahu, L. K., & Lal, S. (2006). Distributions of C2-C5 NMHCs and related trace gases at a tropical urban site in India. Atmospheric Environment, 40, 880–891.CrossRefGoogle Scholar
  41. Schneider, M., Luxenhofer, O., Deissler, A., & Ballschmiter, K. (1998). C1–C15 alkyl nitrates, benzyl nitrate, and bifunctional nitrates: measurements in California and South Atlantic Air and global comparison using C2Cl4 and CHBr3 as marker molecules. Environmental Science and Technology, 32, 3055–3062.CrossRefGoogle Scholar
  42. So, K. L., & Wang, T. (2004). C3-C12 non-methane hydrocarbons in subtropical Hong Kong: spatial-temporal variations, source-receptor relationships and photochemical reactivity. Science of the Total Environment, 328, 161–174.CrossRefGoogle Scholar
  43. Srivastava, A., Sengupta, B., & Dutta, S. A. (2005). Source apportionment of ambient VOCs in Delhi City. Science of the Total Environment, 343, 207–220.CrossRefGoogle Scholar
  44. Tang, J. H., Chan, C. Y., Wang, X. M., Chan, L. Y., Sheng, G. Y., & Fu, J. M. (2005). Volatile organic compounds in a multi-storey shopping mall in guangzhou, South China. Atmospheric Environment, 39, 7374–7383.CrossRefGoogle Scholar
  45. Tang, J. H., Chan, L. Y., Chan, C. Y., Li, Y. S., Chang, C. C., Liu, S. C., et al. (2007). Characteristics and diurnal variations of NMHCs at urban, suburban, and rural sites in the Pearl River Delta and a remote site in South China. Atmospheric Environment, 41, 8620–8632.CrossRefGoogle Scholar
  46. Tang, J. H., Chan, L. Y., Chan, C. Y., Li, Y. S., Chang, C. C., Wang, X. M., et al. (2008). Implications of changing urban and rural emissions on non-methane hydrocarbons in the Pearl River Delta region of China. Atmospheric Environment, 42, 3780–3794.CrossRefGoogle Scholar
  47. Tie, X., Geng, F., Peng, L., Gao, W., & Zhao, C. (2009). Measurement and modeling of O3 variability in Shanghai, China: application of the WRF-Chem model. Atmospheric Environment, 43, 4289–4302.CrossRefGoogle Scholar
  48. Tsai, W. Y., Chan, L. Y., Blake, D. R., & Chu, K. W. (2006). Vehicular fuel composition and atmospheric emissions in South China: Hong Kong, Macau, Guangzhou, and Zhuhai. Atmospheric Chemistry and Physics, 6, 3281–3288.CrossRefGoogle Scholar
  49. Vega, E., Mugica, V., Carmona, R., & Valencia, E. (2000). Hydrocarbon source apportionment in Mexico City using the chemical mass balance receptor model. Atmospheric Environment, 34, 4121–4129.CrossRefGoogle Scholar
  50. Wang, J. L., Chang, C. J., & Lin, Y. H. (1998). Concentration distributions of anthropogenic halocarbons over a metropolitan area. Chemosphere, 36, 2391–2400.CrossRefGoogle Scholar
  51. Wang, J. L., Chew, C., Chen, S. W., & Show-Ru, K. (2000). Concentration variability of anthropogenic halocarbons and applications as internal reference in volatile organic compound measurements. Environmental Science and Technology, 34, 2243–2248.CrossRefGoogle Scholar
  52. Wang, T., Cheung, T. F., Li, Y. S., Yu, X. M., & Blake, D. R. (2002). Emission characteristics of CO, NOx, SO2 and indications of biomass burning observed at a rural site in eastern China. Journal of Geophysical Research, 107, 4157. doi: 10.1029/2001JD000724.CrossRefGoogle Scholar
  53. Wang, T., Wong, C. H., Cheung, T. F., Blake, D. R., Arimoto, R., Baumann, K., et al. (2004). Relationships of trace gases and aerosols and the emission characteristics at Lin'an, a rural site in eastern China, during spring 2001. Journal of Geophysical Research, 109, D19S05. doi: 10.1029/2003JD004119.CrossRefGoogle Scholar
  54. WMO (World Meteorological Organization) (2007). Scientific Assessment of ozone depletion: 2006, Global Ozone Research and Monitoring Project-Report No. 50, 572 pp., Geneva, Switzerland.Google Scholar
  55. Woo, J. H., Streets, D. G., Carmichael, G. R., Tang, Y., Yoo, B., Lee, W. C., et al. (2003). Contribution of biomass and biofuel emissions to trace gas distributions in Asia during the TRACE-P experiment. Journal of Geophysical Research, 108, 8812.CrossRefGoogle Scholar
  56. Xie, X., Shao, M., Liu, Y., Lu, S., Chang, C.-C., & Chen, Z.-M. (2008). Estimate of initial isoprene contribution to ozone formation potential in Beijing, China. Atmospheric Environment, 42, 6000–6010.CrossRefGoogle Scholar
  57. Ye, B., Ji, X., Yang, H., Yao, X., Chan, C. K., Cadle, S. H., et al. (2003). Concentration and chemical composition of PM2. 5 in Shanghai for a 1-year period. Atmospheric Environment, 37, 499–510.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.School of Environmental Science and EngineeringSun Yat-Sen UniversityGuangzhouChina
  2. 2.Shanghai Meteorological BureauShanghaiChina
  3. 3.College of ForestryFujian Agriculture and Forestry UniversityFuzhouChina

Personalised recommendations